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T his article develops and illustrates a new knowledge discovery algorithm tailored to the 
action requirements of management science applications. The challenge is to develop 

tactical planning forecasts at the SKU level. We use a traditional market-response model to 
extract information from continuous variables and use datamining techniques on the residuals 
to extract information from the many-valued nominal variables, such as the manufacturer or 
merchandise category. This combination means that a more complete array of information can 
be used to develop tactical planning forecasts. The method is illustrated using records of the 
aggregate sales during promotion events conducted by a 95-store retail chain in a single 
trading area. In a longitudinal cross validation, the statistical forecast (PromoCastTM) pre- 
dicted the exact number of cases of merchandise needed in 49% of the promotion events and 
was within + one case in 82% of the events. The dataminer developed rules from an 
independent sample of 1.6 million observations and applied these rules to almost 460,000 
promotion events in the validation process. The dataminer had sufficient confidence to make 
recommendations on 46% of these forecasts. In 66% of those recommendations, the dataminer 
indicated that the forecast should not be changed. In 96% of those promotion events where 
"no change" was recommended, this was the correct "action" to take. Even including these 
"no change" recommendations, the dataminer decreased the case error by 9% across all 
promotion events in which rules applied. 
(Datamining; Rule Generators; Residual Analysis; Promotion Event Forecasting) 

Introduction 
"Turning a mining tool loose in a large data set might 
produce more than 2,000 findings, all but 20 of them 
obvious, irrelevant or flawed.... One tool told us 
income is higher for people who have big balances. 
Well, yippee," warns Mike Eichorst, Vice President of 
Predictive Modeling and Data Mining at The Chase 
Manhattan Bank Corp.'s consumer credit unit in New 
York in the article "Data Mining for Fool's Gold" 

(Computerworld, January 12, 1997). The growth of 
business databases has created the need for datamin- 
ing. The rapid expansion of computer resources has 
created the potential. Utilizing the potential to fulfill 
the need has been hampered by a lack of communica- 
tion between management scientists and computer 
scientists. This joint effort describes how datamining 
can augment traditional management science tools- 
market-response models in this instance (Blattberg 
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and Neslin 1990, Lilien and Rangaswamy 1998, Rao 
and Steckel 1998)-and what we have learned from 
applying a new datamining algorithm to a large-scale, 
empirical effort aimed at tactical promotion planning. 

Management science is action oriented. Businesses 
possess vast historical databases, and managers want 
to know how the information in them can help pro- 
scribe what actions to take in various sets of current 
and future circumstances. In our application, we al- 
ready had a tactical forecasting tool (PromoCastTM) 
that was calibrated to handle any of the over 150,000 
stock keeping units (SKUs) for which a promotion 
event might be planned by a grocery retailer in a 
particular geographic market (Cooper et al. 1999). 
That tool has to cope with the huge variability in 
results, from the six units that some well-known brand 
might sell in one event to the 250,000 baskets of 
strawberries that suddenly appear on sale one Febru- 
ary and move over the scanner. The statistical fore- 
caster did this well. In the first pilot market, almost 
49% of the forecasts predicted exactly the number of 
cases of product needed. Over 82% of the forecasts 
were within + one case. However, Procter & Gamble 
might claim that, when TideTM goes on sale at a large 
discount and appears in major ads, it gets a bigger 
sales boost than estimated by the market-response 
model. A thousand other manufacturers could make a 
similar claim in each particular product category. 
Market-response models are not sufficiently robust to 
respond to the addition of 1,000 dummy variables for 
the manufacturers, 1,200 dummy variables for the 
merchandise divisions in a grocery store, 95 variables 
for the store-by-store effects, the possible interactions 
between these sets of indicators, or the possible inter- 
actions with the many other variables in the tactical 
forecasting model. 

The statistical model has been designed to be trans- 
portable (after recalibration) across retailers and geo- 
graphic markets. PromoCastTM uses 67 variables that 
capture how the history of each item (SKU) and the 
history of each store in a trading area combine with a 
proposed promotion plan to help retailers decide how 
much they should expect to sell in an upcoming 
promotion event. To characterize the promotion style, 
the model uses unit price, the percentage discount, 

whether the promotion is an X-for-the-price-of-Y sale, 
main effects for ads and displays, two- and three-way 
interactions of ads, displays, and the percentage dis- 
count, and a large number of historical averages (e.g., 
the item's average promoted sales volume on similar 
promotions in the focal store). 

In spite of tracking many influences, the parameters 
that reflect the importance of item-specific information 
in PromoCastTM may overrepresent or underrepresent 
the importance of that item's history for a particular 
manufacturer. Factors that are specific to a manufac- 
turer, a retail store, or a geographic area do not fit well 
with the general scheme of a market-response model. 
A datamining algorithm, however, could be great at 
finding rules such as: "When manufacturer A under- 
writes a major promotion for its flagship brand B in 
major market C, the forecast tends to underpredict by 
D cases." Nominal variables with many levels are 
obvious candidates from which to extract the local 
information that could improve a forecast. The statis- 
tical forecaster handles the quantitative (continuous) 
variables that tend to characterize all markets, 
whereas the dataminer handles the nominal-scale 
variables that are more specific to a particular retailer 
and geography. We do this sequentially; first, the 
statistical forecast is developed on the quantitative 
variables, and then the dataminer is applied to the 
residuals from the statistical forecast. In other words, 
our datamining tool is oriented to discovering pat- 
terns in the residuals that correspond to local knowl- 
edge. We then use this local knowledge to form rules 
to improve the forecast. As we show, using these rules 
lets us know when we can be especially confident in 
the existing forecast, when we can expect a substantial 
overall reduction in forecasting error, and when we 
are not certain enough to act. 

In this paper, we discuss our experience in design- 
ing and implementing a datamining tool that discov- 
ers patterns in the residuals that correspond to local 
knowledge. We do this on an enterprise scale. Our 
training database (used to develop rules) is a stratified 
random sample of more than 1.6 million records 
pulled out of a total database of more than 19 million 
records, reflecting retail grocery promotions from the 
95 outlets of a major retailer in a large metropolitan 
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Figure 1 Overall Forecast System Design 
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area. Our population database represents about 30 
months' worth of promotion events. Here we present 
a validity study based on out-of-sample results-a 
hold-out sample of almost 460,000 records that were 
collected after the statistical model was calibrated and 
after the local knowledge was mined. 

The objective of the project was stated clearly at the 
beginning: how to produce forecasts that are useful for 
promotion planning. Grocers need to know how much 
stock to order for an upcoming promotion event. 
Grocers want to minimize inventory costs and out-of- 
stock conditions (often conflicting goals). Manufactur- 
ers want to maximize shipments, putting them some- 
what at odds with the goals of the grocers. Possibly 
mitigating this conflict are the very large databases 
containing information on prior promotion experience 
for each separate SKU in each store within a retail 
chain for as far back as good records have been kept. 
Efficient Market Services, Inc. (ems, inc.) has been 
keeping such records on their clients' promotions. 
Databases exist for over 3,000 stores, and more are 
being developed.' 

In Figure 1, the overall design is depicted. Cooper et 
al. (1999) developed a statistical forecaster called Promo- 
CastTM that has a traditional market-response model 
orientation. It is a production forecast, not a custom 
model. Excluded from this model were nominal vari- 
ables such as which manufacturer made the item to be 

'See www.ensinfo.com for more information. 

promoted or what class of merchandise was being pro- 
moted (i.e., subcommodity). These two variables alone 
would add 2,200 dummy variables to the market-re- 
sponse model even before considering possible interac- 
tions of manufacturer or subcommodity with variables 
included in the model. A lot of information would be left 
in the residuals that would not easily be incorporated 
into a market-response model. This is the task we set up 
for the dataminer. We need a rule-induction algorithm to 
discover when the information in the excluded variables 
indicates that we should modify our forecast. Once a set 
of discovered rules is built, we can use such rules to 
adjust the forecast. This is the task of the "Corrective 
Action Generator" module. Such corrective actions sug- 
gest an offset (positive or negative) to be added to the 
forecasted value in order to get higher overall accuracy. 

Rule Syntax and Semantics 
The datamining algorithm finds rules such as the 
following: 

IF 

DCS = 'Gelatin' and 

TPR = 'Very High' and 
Mfr = 'General Foods,' 

THEN 
U 12 = 0, 
U_4_11= 58, 
U_3 = 221, 

U_2 = 1149, 

U_1 = 3583, 

Ok = 1115, 

0_1 = 7, 

0_2 = 1, 

0_3 = 0, 
0_4_11= 0, 
0 12 = 0, 

where the independent variables in the "if conditions" 
have the following meaning: 

* "DCS" stands for the triple Department-Com- 
modity-Subcommodity, identifying a particular class 
of merchandise being promoted (e.g., yogurts, gela- 
tins, or prepared dinners). 

* "TPR" identifies the level of the Temporary Price 
Reduction. Promotions usually involve some item 
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price reduction. Values for this variable have been 
generalized to a set of five possible discrete values: 
none, low, mnedium, high, and very high. 

* "Mfr" identifies the manufacturer of the given 
product. 
The other variables that we mined were: 

* Promotion conditions "ME" identify a nine-fold, 
mutually exclusive and exhaustive classification of the 
ad and display conditions. Newspaper ads were clas- 
sified as major ads, minor ads, or no ads. In-store 
displays were classified as major displays, minor 
displays, or no displays. The "ME" conditions were 
the cross-classification of this 3 X 3 classification. 

* "Model" specifies one of the eight models used in 
PromoCastTM. Although the same variables (as de- 
scribed above) were used, separate parameters were 
estimated for each of the four major promotion-plan- 
ning periods (one-, two-, three-, or four-week dura- 
tion), crossed with slow-moving items versus fast- 
moving items. Slow-moving items were those that 
were expected to sell less than 10 units a week in an 
individual store (based on historic performance). 

* "Store Node" allows for store-specific effects or 
interactions for each of the 95 stores belonging to one 
retail chain in the pilot market. 

Errors in the forecast are expressed in a number of 
cases (i.e., the minimum order quantity for each partic- 
ular SKU, usually 12 units in a case). For example, an 
error of -3 means that we underestimated the sales for 
that specific promotion by three cases ("U_3" class); a 
value of 5 means that we overestimated five cases 
("G_411" class). In our application, the entire set of 
possible errors has been generalized into a reduced set of 
11 possible values for the class variable, namely: 

0o12_: Over by 12 or more cases 
0_4_11: Over by 4 to 11 cases 
0_3: Over by 3 cases 
0_2: Over by 2 cases 
O_1: Over by 1 case 
Ok: No error 
U_1: Under by 1 case 
U_2: Under by 2 cases 
U_3: Under by 3 cases 
U_4_11: Under by 4 to 11 cases 
U_12_: Under by 12 or more cases 

The previous rule, for example, states a clear ten- 
dency to underforecast products in the subcommodity 
"gelatin" for the manufacturer "General Foods" when 
a large price discount is offered. As we will see later, 
we save a lot by specifying a corrective action in such 
circumstances that simply increases our forecast by 
one case. 

We turn now to a discussion of the datamining 
algorithm we call KDS (Knowledge Discovery using 
SQL-Structured Query Language) and the applica- 
tion of KDS to our problem. 

Knowledge Discovery from 
Databases/Data Mining (KDD/DM) 
Some remarkable industrial failures cooled down the 
initial enthusiasm of KDD/DM developers. The 
promised wonders of KDD/DM tools have too often 
resulted in some form of obvious, superfluous, or imprac- 
tical findings. Datamining advertisements portray a 
potbellied 30-ish man dressed only in diapers and tout 
such findings as "At 6:32 PM every Wednesday, Owen 
Bly buys diapers and beer. Do not judge Owen. 
Accommodate him" (Wall Street Journal, May 15, 1997, 
p. B3). Such messages cause the eyes of management 
scientists, used to enterprise-scale applications, to 
glaze over. However, it is not our purpose to discuss 
the potential uses of datamining for mass customiza- 
tion of targeting, service, or customer support. Rather, 
we will demonstrate the ability of a datamining algo- 
rithm to find useful and well-supported patterns in 
data that market-response models are not designed to 
harvest. 

KDS is a highly scalable, rule-generating, datamin- 
ing system that is not bound by physical memory, is 
bottom up, and requires little or no data preprocess- 
ing. KDS is implemented, following the tightly cou- 
pled model, with DB2?. The entire algorithm is exe- 
cuted as a sequence of complex Structured Query 
Language (SQL) queries sent to the database manage- 
ment system (DBMS). Each of these attributes is de- 
scribed below. 

Rule Generation 
The output of KDS is a set of symbolic rules in the form: 
"if <pattern> then <class-distribution>." The pattern is 

252 MANAGEMENT SCIENCE/Vol. 46, No. 2, February 2000 



COOPER AND GIUFFRIDA 
Turning Datamnining into a Management Science Tool 

the conjunction of particular values for the indepen- 
dent variables (e.g., a = A & b = B & c = C, where 
A, B, and C are particular levels of the variables a, b, 
and c, respectively). At this time, KDS does not allow 
continuous variables; only discrete (nominal) vari- 
ables currently can be part of the set of explanatory 
variables. This makes it an ideal complement for 
traditional market-response models that thrive on 
continuous variables, but have problems with large 
numbers of dummy variables.2 The class-distribution is 
a frequency distribution of the dependent measure 
(number of case errors in our application) of all the 
input examples satisfying the condition specified on 
the "if" part. In the following, we refer to conjunctions 
of the form "a = A" as one-term patterns and 
conjunctions of the form "a = A & b = B" as 
two-term patterns, and so on. 

Top-Down versus Bottom-Up Algorithms 
Most of the mining algorithms in the literature are 
based on a separate-and-conquer approach (Furkranz 
1996). In a nutshell, this is a recursive procedure 
where, at each recursion, the input dataset I is sepa- 
rated in two mutually exclusive and exhaustive parts 

Ii and I2 (say all "General Foods" promotions versus 
all other SKUs). The separation is performed in a way 
that maximizes a function if. Different algorithms use 
different functions; usually they tend to minimize the 
entropy of the class distribution on one of the sub- 
parts. Each separation generates a new rule R that 
covers all observations in I1 (say all "General Foods" 
promotions are underforecast by two cases). In turn, 
after R is generated, I is assigned to I2 (the set of 
observations not covered by R-all SKUs that are not 
"General Foods" in this example), and the recursion 
continues on I (the conquer phase).3 The recursion 
halts as soon as no more splitting can take place (i.e., 
the database is smaller than a given threshold of 
support, namely the minimum support). 

2 Prior ad-hoc discretization can be used to transform continuous 
variables such as temporary price reduction (TPR) into levels of 
discount (e.g., none, low, medium, high, and very high). 

3 Classification tree discovery algorithms (Quinlan 1993) are based 
on a slightly different approach, namely divide-and-conquer. In such 
an approach, after the database is split into n subparts, the same 
procedure is recursively called on each subpart. 

The most expensive part of these algorithms is the 
splitting phase in which some form of "for each 
possible feature" loop takes place to maximize i], that 
is, an exhaustive search is performed over the entire 
set of features. We argue that, when combinations of 
thousands of possible features have to be considered, 
this can be costly for large feature spaces. Besides the 
additional complexity of testing thousands of features, 
a separate-and-conquer approach may be inefficient 
since every possible combination of features is tested. 
Many of these combinations may not even exist in the 
input database (e.g., Yoplait, diapers, Hamburger 
Helper batteries). This is a misplaced legacy inherited 
from machine-learning practice in which small feature 
spaces were the norm and the costs of testing features 
were small. When dealing with thousands of features, 
the possible combinations may be numerous, with 
many missing combinations. We refer to the process of 
testing all possible combinations of features as a 
top-down approach. 

In contrast, KDS works in a bottom-up way, starting 
from the input database. Rules are built incrementally, 
starting from the simplest ones (one-term patterns) 
and then progressively proceeding to more special- 
ized rules (two-term, three-term, and so on). The first 
iteration generates all observed one-term patterns, the 
second generates all observed two-term patterns, and 
so on. Each iteration specializes all the patterns gen- 
erated so far by adding a new term to the "if <pat- 
tern>." In each iteration, a (possibly large) set of new 
rules is added to the accumulating rule set. The 
iteration halts as soon as rules cannot be further 
specialized because their popularity (number of sup- 
porting records) drops below a specified minimum- 
support threshold. Because rule popularity decreases 
monotonically on each iteration, the process is guar- 
anteed to terminate. The algorithm is sketched in the 
appendix. 

As stated above, in a separate-and-conquer ap- 
proach, the first rule is induced from the entire input 
database. Then, all covered examples are removed and 
the second-best rule is induced on what is left over. 
Successive rules are thus induced from smaller and 
smaller portions of the database. Such progressive 
fragmentation of the input database yields reduced 
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numerical support for rules discovered later in the 
induction process. Holte et al. (1989) demonstrate that 
a substantial proportion of the overall classification 
error is due to rules covering a small set of observa- 
tions, which they call the "small disjuncts problem." 
Inducing rules on increasingly smaller sets (as done in 
separate-and-conquer algorithms) indirectly exacer- 
bates the small disjuncts problem. KDS follows the 
conquer-without-separating strategy, proposed by 
Domingos (1996a, b), which avoids the small disjuncts 
problem by discovering all rules from the entire input 
data set. 

No Memory-Bound Processing. Any form of dis- 
covery algorithm is inherently memory intensive. 
Most of the induction algorithms presented in the 
machine-learning literature exacerbate the small dis- 
juncts problem by loading the entire data set (and the 
discovered knowledge) into the main memory. If the 
memory (physical and virtual) is full, the process 
stops. We have watched a C implementation of a 
standard algorithm, CN2 (Clark and Niblett 1989), 
crash on a database of about 70,000 records (with a 
large feature set) after about 10 hours of processing, 
even after allocating 400 Mbytes of main memory 
(physical plus virtual memory). Our management 
science applications are much larger than this. Al- 
though recent developments of machine-learning 
techniques claim to reduce the cost of rule-finding 
algorithms (Domingos 1996a), the cost is often com- 
puted under too ideal situations. Cohen (1995) tested 
the "Ripper" algorithm on a system with eight RISC 
processors and one gigabyte of physical memory. In 
that relatively ideal computational environment, the 
Ripper algorithm was the "best of class." Our need to 
be able to scale management science applications to 
the enterprise level, however, implies that, in many 
contexts, not enough physical memory will be avail- 
able. The virtual memory facility will be needed. The 
cost of swapping between physical and virtual mem- 
ory invalidates the original cost estimates for an 
algorithm. 

We tried Ripper on our training database using a 
Windows NT dual processor system (2 X 200 Mhz 
Pentium Pro) equipped with 128 Mbytes internal 
memory and enough virtual memory to avoid crash- 

ing the algorithm. Even with no other tasks running at 
the same time, Ripper executed for 21 days without 
finishing. Datamining algorithms based on physical 
and/or virtual memory are not practical for manage- 
ment science applications of this scope. KDS, in con- 
trast, is implemented in a tightly coupled (cf. Agrawal 
and Shim 1995, 1996), client-server model described 
below. Whenever the problem size is too large to fit 
into physical memory, the kind of client-server model 
described below should have a substantial practical 
advantage over CN2 or Ripper. 

Minimal Data Preprocessing. Most discovery al- 
gorithms require the input data to be in a specific 
format, usually a single, flat-text file. This requires an 
export operation from the DBMS hosting the data (i.e., 
the mining tool is decoupled from the DBMS). Export- 
ing a very large database can be a lengthy and tedious 
process, causing an extremely large text file to be 
generated. The benefits of the relational data model 
can no longer be exploited. This leads to data replica- 
tion and redundancy that can make the flat file much 
larger than the size of the original relational database. 
Furthermore, data need to be clean and formatted as 
requested by the mining tool. Data preprocessing can 
easily count for 70%-80% of the total KDD processing 
time. In the literature, very often, algorithms are 
compared on computation time (efficiency) without 
considering the time spent in data preprocessing. 

In a loosely coupled, client-server model (Agrawal 
and Shim 1995, 1996), the mining tool extracts the 
records from the DBMS one at a time. Such an 
operation is typically performed through exploitation 
of cursors in an embedded SQL application. While this 
approach eliminates the hassles of generating and 
handling large flat-text files, in loosely coupled mod- 
els, substantial data communication takes place be- 
tween the client (the mining tool) and the server. The 
entire database has to be transferred, record by record, 
since the processing is performed entirely on the client 
side while the data reside in the DBMS. 

KDS is implemented as a tightly coupled, client- 
server model, in which the largest part of the mining 
process is implemented on the server. The communi- 
cation traffic between the two systems is reduced to 
delivery of commands and retrieval of results. The 
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Figure 2 Rule Network Example 
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client acts as a control to synchronize the different 
phases of the process. The complete task is achieved 
by a sequence of complex queries execution and/or 
calls to User Defined Functions (UDFs) (cf. Agrawal 
and Shim 1995). We believe that the tightly coupled, 
client-server model is by far the most promising for 
developing highly scalable, datamining processes be- 
cause of how rules are generated, organized, and 
ranked. These issues are discussed below. 

Rule Generation and Organization. In most in- 
duction algorithms, the rule-generation and rule-rank- 
ing phases are tightly integrated. A rule-scoring mech- 
anism generates the best rule for each iteration. This is 
fine for exploration, but not for action-oriented man- 
agerial applications. In management science applica- 
tions, we need to see what stored knowledge tells us 
about a current situation and act accordingly. We may 
not need to take action until long after the learning. 
However, we may need to increment what we learn 
with new information. The advantage, then, goes to a 
method that separates the learning phase from the 
action phase. In KDS, there is a crisp separation 
between the rule-generation (learning) phase and the 
action (rule-ranking and selection) phase. KDS creates 
all the rules from the input database and arranges 
them in a rule network. The rule-ranking and selection 
task is postponed until the action phase (discussed 
below). KDS typically generates a large set of discov- 
ered rules. The rule network optimizes rule retrieval 
and speeds up the classification task (i.e., the task of 

finding which rules in the network apply to a given 
new situation). An example of rule network is seen in 
Figure 2. The lowest levels of the rule network contain 
the one-term patterns. Up one level are the two-term 
patterns, and so on. This architecture simplifies the 
process of selecting all rules containing a specific 
pattern. They are simply identified by all the ancestors 
of the node containing the pattern of interest. Each 
node of the rule network contains the specification of 
the pattern itself and the class distribution vector.4 

The Action Phase-Classifying and Acting on New 
Examples 
Once the rule network has been created, we move to 
the action phase, in which classification of new exam- 
ples takes place. With a rule network in place, a new 
event occurs. In our case, the new event is a planned 
promotion for which a forecast has been made. We 
need to determine whether to alter that forecast, given 
the local knowledge in the rule network. We must 
figure out which rules apply to this new event and 
take the appropriate action. Classification in KDS is 
performed through the following steps: 

1. Rule selection: find all the rules covering the 
example to be classified. 

2. Rule ranking: select the best rule(s) according to 
the ranking criterion. 

4 In the actual implementation of KDS, we also record entropy, rule 
coverage, and number of features. This additional information is 
useful in speeding up the classification process. 
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Figure 3 Activated Nodes in Rule Network Example 
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3. Examnple classification: assign the most likely class 
of the chosen rule(s) to the input example (e.g., is it 
most likely that this event is overforecast by two 
cases?). 

As explained above, the rule network makes the 
selection of all rules applying to a new case efficient. 
For instance, given the rule network of Figure 2 and 
the input example {ME = "Major Ad and No Display," 
Mfr = "General Foods," Tpr = "None," DCS = "Yo- 
gurt"), Figure 3 shows all the rules in the rule network 
that are triggered by the input example (i.e., the set of 
rules covering the given example). Notice that rules 
whose pattern contains the feature DCS = "gelatin" 
have not been activated since such a condition does 
not occur in the input example. The selection algo- 
rithm starts from the bottom of the rule network by 
activating the one-term rules corresponding to the 
features of the input example. Then the activation is 
propagated upward, and each higher node is acti- 
vated if all of its children are active. The activation 
goes up to the highest nodes of the network. At this 
point, all rules covering the input examples are 
marked. Among these rules a ranking has to be 
performed that indicates to which action class this 
new example most likely belongs. 

Entropy-based rule ranking is widely exploited in 
rule classifiers. Entropy is computed from the class 
distribution vector. Because there can be different 
costs associated with certain types of misclassifica- 
tions in the class distribution, we felt that a simplified 
procedure would be more robust (cf. Hand 1997, p. 7). 
In the winning-group procedure we developed, the 
class distribution is rearranged to perform only three 
types of corrective actions: No-Action, Add Cases, and 
Subtract Cases. Basically, we use the most populated 

class in the original distribution to decide the winning 
group. For instance, let us consider that the most 
populated class is "Under_3." As such, the winning 
group will be a new class whose population is ob- 
tained by summing up all the "Under" classes to- 
gether, while the others are obtained by summing up 
all the "Over" classes plus the "Ok" class. If "Ok" is 
the winning group, the others are obtained by sum- 
ming up all the "Over" classes plus the "Under" class. 
The entropy is then computed on this two-class dis- 
tribution. We then store the rule along with this 
normalized entropy. An algorithm analysis is pre- 
sented in the appendix. 

The Action Phase-Corrective Actions 
The rule network assures us that we can easily find the 
set of rules that apply to a new event. We still, 
however, must decide which corrective action to take. 
To aid this, each rule is annotated with the entropy and 
confidence value. The entropy value is computed by the 
formula: E = -E, p log(p), where the estimates of the 
p values come from the relative frequencies in the 
class distribution for a rule in the calibration data set. 
The confidence value is computed as: 10,000 x (1 
- E'), where E' is the entropy normalized to remove 
differences due only to the number of categories in a 
class distribution. Confidence, basically, gives us an 
estimate of how how strong the rule is, that is, how 
much we trust the rule. A class distribution with only 
one nonempty class, out of the 11 possible classes, 
gives us the highest confidence value. Conversely, a 
uniform distribution, in which all the classes are 
equally populated, gives us the highest entropy and 
the lowest confidence. 

A corrective action is taken following a forecast to try 
to reduce error. Corrective actions are suggested by 
the induced rules. Different types of corrective actions 
can be taken. The simplest one is based on adjusting 
the forecast value according to the most likely class. 
Consider again the rule: 

IF 

DCS = 'Gelatin' and 
TPR = 'Very High' and 
Mfr = 'General Foods,' 
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THEN 

U_ 12 0, 
U_4_11 58, 
U_3 221, 
U_2 = 1149, 
U_1 = 3583, 
Ok = 1115, 

0_1 7, 
0_2 1, 
0_3 = 0, 

0_4_11= 0, 
0 12 0 , 

Here, the simplest (most intuitive) corrective action 
would suggest incrementing the forecasted value by 
one, since the most populated (most likely) class is 
U_1 (indicating that our forecaster tends to underfore- 
cast under these specified conditions). This simple 
action leads to overall improved accuracy. That is, 
without the corrective action the total case error for the 
previous rule is computed by the class distribution as: 

12*0 + 4*58 + 3*221 + 2*1149 + 1*3583 + 0*1115 

+ 1*7 + 2*1 + 3*0 + 4*0 + 12*0 = 6785. 

Once we perform the corrective action of adding one 
case to all estimates, we get the following total case 
errors: 

12*0 + 4*0 + 3*58 + 2*221 + 1*1149 + 0*3583 

+ 1*1115 + 2*7 + 3*1 + 4*0 + 12*0 = 2897. 

By shifting one case up, we basically fix the 3,583 U_1 
cases (that now lead to an "0" error); we also reduce 
the error for all U_xx cases. At the same time, we 
increase the errors for Ok (the 1,115 Ok cases now 
have an error of one case each) and all the O_xx 
classes. However, the frequency distribution after the 
correction yields a substantial error reduction [(6785- 
2897)/6785 = 57.3%] for the set of examples covered 
by that rule. Intuitively, no corrective action should be 
taken when the most populated class is "Ok." 

While for this example almost 77% of the forecasts 
were within ? one case, across all events in this pilot 
market, over 82% of the forecast errors are within 
? one case. In light of this a priori knowledge, we 

restricted our actions to a maximum of ? one case. We 
used this method in the results below, but hope to 
generalize the method in the future. 

Results 
The parameters of the statistical forecast were cali- 
brated on 1.3 million observations from a stratified 
random sample of promotion events from the prior 30 
months in a large metropolitan market area for 95 
stores of a retail chain. The dataminer was run on 
nonoverlapping 1.6 million observations from the 
same event population, and 28,187 rules were gener- 
ated. The summaries reported here are based on a 
large data set (459,526 records) from a hold-out, cross- 
validation period that occurred months after the pa- 
rameters of the market-response model had been 
estimated. The "Ok" class is by far the most popu- 
lated. As stated earlier, for almost 49% of the promo- 
tion events, the market-response model forecast the 
correct number of cases. For 82% of the events the 
model was within ? one case, and for 90% of the 
events the model was within ? two cases. The average 
absolute error is far less than one case per promotion 
event. This gives a clear idea of how well the statistical 
forecaster works, even before applying the dataminer. 
The task of the dataminer is therefore extremely 
challenging. Even a small improvement (in terms of 
error reduction) is hard to achieve since it is on top of 
an already highly accurate system. 

The confidence for acting on a rule was set relatively 
low (900 out of a maximum value of 10,000).5 The 
dataminer had sufficient confidence to recommend ac- 
tion on 46% of the forecasts (209,912 events). In the 
spirit of the physician's rule to first do no harm, the 
dataminer recommended "No Change" in 66% 
(138,614) of these events. "No change" was the correct 
"action" to take 96% of the times it was recommended. 
In such instances the dataminer added credibility to 
the original forecast. 

5 The minimum confidence threshold value depends upon the 
current user's goal. The higher the value, the fewer rules are created 
and the fewer records are classified. However, these fewer records 
are classified with a higher degree of confidence. More applied 
studies have to be conducted before precise guidelines can be 
developed. 
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The dataminer compensates for the kind of patterns 
no manager would be expected to recall and no 
market-response model would traditionally incorpo- 
rate. For example, for 2,635 four-week promotion 
events for cat food, with a medium level of price 
reduction, the PromoCastTM overforecasts 58% of the 
time and underforecasts 26% of the time. Simple 
corrective action leads to a 46% reduction in case 
errors. For 350 21-day promotion events for Pedigree 
Dog Food (with a medium level TPR), PromoCastTM 
underforecasts 88% of the time and overforecasts just 
2% of the time. Simple corrective action reduces case 
errors by 79%. For long (28-day) promotions for Yo- 
plait Yogurt (2,445 events), PromoCastTM overforecasts 
59% of the events and underforecasts 24%. Simple 
corrective action reduces case errors by 42%. For short 
(seven-day) promotions for Dannon Yogurt (1740 
events), PromoCastTM underforecasts 78% of the 
events, while overforecasting just 3%. Simple correc- 
tive action reduces case errors by 60%. 

In this validation study, the benefit showed mostly 
on the underforecast side. That is, the dataminer 
tended to catch somewhat more situations where the 
statistical model underforecasts sales. This may, in 
part, be due to the truncation that occurs in out-of- 
stock conditions. If the store runs out of stock, the 
forecast may appear to be too large for a reason that 
the dataminer cannot detect. To a minor extent, the 
corrective actions worsened the overforecast classes. 
Of course in the instances when the dataminer sug- 
gested that we "correct" an already accurate forecast, 
the dataminer worsened case errors. For this to be 
managerially acceptable, we need the overall effect to 
be beneficial, which it is in this case. The cumulative 
case error from PromoCastTM for the 209,912 events in 
which rules applied was 112,860 cases of merchandise. 
Across all actions taken (including "No Change"), the 
dataminer reduced errors by 10,117 cases (8.9%). To 
put the 8.9% across-the-board improvement in per- 
spective, we report the efforts of Krycha (1999). He 
provided two teams with the data used by Promo- 
CastTm and KDS for the pilot market (1.2 million 
records). One team consisted of graduate students and 
two consultants from the SAS Institute Austria. They 
used the SAS Enterprise MinerTM to try to reduce case 

errors. The other team consisted of graduate students 
and two consultants from Eudaptics (a statistical con- 
sulting group in Vienna that specializes in self-orga- 
nizing maps). This group used SOMineTM to try to 
reduce case errors. After a semester of effort, both 
groups reported that they could not improve on 
PromoCastTM. Viewed from this perspective, even the 
8.9% across-the-board improvement seems more im- 
pressive. 

Table 1 summarizes the rules that were used to 
change forecasts for 209,912 events. Table 2 summa- 
rizes the rules that were used to support not changing 
the forecasts for 249,614 events. We mined up to 
four-term rules. Of the rules we used, approximately 
75% were either two-term or three-term rules. The 
relative frequencies for the number of terms in a rule 
(i.e., the bottom row of each table) were stable be- 
tween rules pointing to a change and rules indicating 
no change. Over 85% of the activated rules had more 

Table 1 Events Where Rules Change Forecast, N = 209912 

Terms in Rule 

Variable 1 2 3 4 

Promotion Condition-ME 0% 9% 17% 22% 
Store Node 0% 10% 11% 7% 
Model 27% 29% 27% 23% 
Manufacturer 34% 17% 11% 12% 
Subcommodity-DCS 39% 19% 11% 13% 
TPR 0% 16% 22% 22% 
Pct. of Rules in Column 14% 34% 39% 13% 

Table 2 Events Where Rules Do Not Change Forecast, N = 249614 

Terms in Rule 

Variable 1 2 3 4 

Promotion Condition-ME 2% 15% 21% 22% 
Store Node 3% 16% 14% 8% 
Model 42% 20% 21% 22% 
Manufacturer 13% 12% 11% 15% 
Subcommodity-DCS 19% 14% 11% 12% 
TPR 20% 23% 23% 21% 
Pct. of Rules in Column 13% 37% 38% 12% 
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Table 3 Datamining Results for the 10 Most Frequently Promoted Categories 

No. of Events PromoCastTM PromoCast@ + KDS Case Percent 
Subcommodity Covered by Rules Errors Case Errors Improvement Improvement 

Carbonated Beverages 6827 11165 9573 1592 14.3% 
Cookies 4440 1651 1632 19 1.2% 
Prepared Meals 4009 2265 1892 373 16.5% 
Frozen Pizza 2460 1034 983 51 4.9% 
Yogurts 3737 4445 3214 1231 27.7% 
Ice Creams 5259 3827 3223 604 15.8% 
Crackers & Savory Snacks 3483 1198 1182 16 1.3% 
Shampoos 5503 1087 1087 0 0.0% 

than one term. Reconsidering the problem of adding 
1,200 dummy variables for merchandise divisions and 
1,000 dummy variables for manufacturer, we now see 
that these additions grossly underestimate the speci- 
fication problem. Over 85% of the actions we take 
invoke rules reflecting higher-order interactions. The 
dataminer represents an enterprise-scale method for 
finding these interactions. 

The cell percent reflects what percentage of n-term 
rules used the variable in that particular row. Some 
interesting patterns emerge. Note in Table 1 (change 
rules) that no one-term rules appear for Promotion 
Condition-ME, Store Node, or TPR. For Promotion 
Condition-ME, this is not too surprising since a 
similar term already appears in the model, leaving 
only higher-order interactions potentially unused. We 
also would not expect to have to change all the 
forecasts relating to a particular Store Node. TPR is a 
five-step, categorical variable that is monotonically 
related to the discount variable in the PromoCastTM 
model. However, we would be mistaken to assume 
that all the information in TPR is used in the market- 
response model. We see this when we compare the 0% 
of events that invoked one-term rules used TPR to 
change forecasts (cf. Table 1), whereas 20% of events 
that invoked one-term rules used TPR indicate no 
change in the forecasts (cf. Table 2). Further investiga- 
tion shows that almost all of these "no change" rules 
involved lower levels of TPR-probably reflecting low 
sales for these event for which one case was sufficient. 
Similarly, 42% of one-term rules in Table 2 involve 
Model. Further investigation shows that when we 
forecast for slow movers for longer events (two-, 

three-, or four-week events), we can have extra confi- 
dence in the original PromoCastTM forecast. 

Overall, 30% of the events invoked rules involving 
manufacturers or merchandise categories (or both). To 
get a better feel for how the dataminer would help a 
manager, we will look at these rules for the biggest 
manufacturers and the biggest merchandise catego- 
ries. Table 3 summarizes the datamining results for 
the eight most frequently promoted categories (sub- 
commodities). Carbonated beverages are difficult to 
predict. Where KDS rules apply, the PromoCastTM 
errors are nearly four times as big as the average 
category. KDS reduces these errors by 14.3%. Even 
bigger percentage error reduction occurs for prepared 
meals, yogurts, and ice creams. For cookies, crackers 
and savory snacks, and shampoos, the error reduction 
is modest. Notice that these categories have small 
average errors. The rules that KDS finds for the most 
part say "No Change." 

Table 4 shows the datamining results for the eight 
most frequently promoted manufacturers. By far, the 
largest is the private label category in which the 
retailer is presented as if it were the manufacturer. 
This "manufacturer" cuts across so many areas that 
we should not be surprised that it reflects just about 
the average error reduction of 8.9%. Double-digit error 
reductions occur with dataminer rules for General 
Mills, Kraft, Coca Cola, Frito Lay, and General Foods. 
Rules for Procter & Gamble give a 4% error reduction 
even though the PromoCastTM forecasts for Procter & 
Gamble events in these instances are much more 
accurate than the average. 
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Table 4 Datamining Results for the 10 Most Frequently Promoted Manufacturers 

No. of Events PromoCastTM PromoCastTM + KDS Case Percent 
Manufacturer Covered by Rules Errors Case Errors Improvement Improvement 

Store Private Labels 29972 21983 20028 1955 8.9% 
Procter & Gamble 7179 2570 2465 105 4.1% 
Nabisco 3805 1466 1435 31 2.1% 
General Mills 3745 2808 2231 577 20.5% 
Kraft 3663 3081 2761 320 10.4% 
Coca Cola 1797 4086 3536 550 13.5% 
Frito Lay 616 898 774 124 13.8% 
General Foods 3104 3059 2452 607 19.8% 

Discussion 
Using the discovered rules, we can spot subdomains 
in which the PromoCastTM forecast performs either 
brilliantly or poorly. The symbolic rule representation 
gives us a precise, understandable description of these 
subdomains. There are two primary ways to take 
advantage of such information. The first way would 
be to review the statistical forecast model itself to 
embed such information. This, in essence, would 
correct for misspecification of the original statistical 
model. This is what modelers typically do. They find 
what is missing from the original specification and 
modify accordingly. However, since any particular 
rule typically covers only a small percentage of the 
total event pool, and since the data driving the im- 
proved performance due to the dataminer are typi- 
cally nominal-scale variables, the potential for directly 
modifying the statistical forecast model is small. We 
are trying to achieve a synthesis of methods. Promo- 
CastTM is designed to be transported across markets 
and retailers. The 67 variables in the basic model will 
have different importance in different applications, 
but the totality (explained variance) should be rela- 
tively stable.6 The customization to each retailer-mar- 
ket combination involves the development of local 
knowledge. Here the marketing value associated with 
such information may be large. Manufacturers want 
forecasts tailored to their individual merchandize 
lines. Category managers need help in handling such 

6 Applications of PromoCastTNI in five other pilot markets support 
this. However, the KDS algorithm has only been applied in the pilot 
market described in this report. 

demands. The dataminer essentially provides that 
kind of mass customization. While the results pre- 
sented here are for a cross-validation data set, the data 
set on which the knowledge is developed could be 
used to inform managers when they can have extra 
confidence in the original PromoCastTM forecast (i.e., 
when the dataminer indicates the forecast is "Ok," 
when local knowledge can be used to improve the 
forecast, and when we are uncertain, that is, when 
there are no rules covering a forecast). 

Future Directions 
Many issues are still open to investigation. Our high- 
est priority concerns the incremental acquisition of 
knowledge. Induced knowledge should be persistent 
and updateable over time in a data-intensive, dynamic 
environment. Incremental learning has received some 
attention in recent years (Agrawal and Psaila 1995, 
Shan and Ziarko 1995, Thomas et al. 1997), but most of 
the machine-learning-rooted, rule-induction algo- 
rithms are based on a "all-at-once" execution model. 
This means that data are read and the rules are 
generated in just one step. Updating the discovered 
knowledge with these algorithms requires a fresh 
remaining of the entire database. This situation may 
be unacceptable in a dynamic, data-intensive environ- 
ment. Think of a grocery retailer whose cash registers 
process purchases of thousands of different items 
daily. A good KDD/DM system should be able to 
update the knowledge discovered so far with the new 
incoming records. Because of the separation between 
the rule-generation phase and the rule-ranking phase, 
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KDS is capable of doing this. This capacity has yet to 
be tested in real applications. 

Another new area involves a reorganization of the 
rule network to extend the rule syntax by allowing 
set-valued features in the rule antecedents (Cohen 
1996). This is like considering the "or" rule as well as 
the "and" rules emphasized so far. Consider the 
following two rules: 

IF TPR= None & 
Mfr_Code = General Foods & 
DCS Luncheon Meats; 

THEN 
No = 0, 
Ok 115. 

IF TPR None & 
Mfr_Code = General Foods & 
DCS = Puddings; 

THEN 
No 0, 
Ok = 113. 

They can be merged into the following single rule: 

IF TPR= None & 
Mfr_Code= General Foods & 
DCS in tLuncheon Meats, Puddings 

THEN 
No 0, 
Ok = 228. 

The variable DCS has been combined into a set of 
values; notice also the combined class distribution. 
The merging of such rules can take place thanks to the 
overlapping nature of the antecedents and the uni- 
form class distribution of the two rules. This extension 
would draw the dataminer closer to the domains in 
which CART algorithms are used (Breiman et al. 
1984). CART applied to nominal-scale variables, such 
as those used here, looks at all possible binary splits. 
This is totally impractical for a variable such as 
manufacturer with 1,000 levels or DCS with 1,200 
levels. 

We also have begun investigation of a hierarchical 
or sequential approach to the action stage of datamin- 
ing for management science applications. We would 
first decide whether we should change the forecast at 
all. We would then decide whether this new event is 

going to be an overforecast or an underforecast. If an 
underforecast, we would then try to decide how many 
cases under. Such an approach would allow us to 
probe more specifically into what contributes to over- 
or underforecasts. More important, this approach 
should allow us to extend the range of corrective 
actions beyond the simple ? one case described here. 
Preliminary research has been encouraging, but more 
development is needed. 

Limitations 
Any technique that focuses on using history (stored 
knowledge) to help correct future actions has inherent 
limitations in new product research and forecasting. 
Neither PromoCastTm nor KDS has anything to say 
about forecasts for new products. In both of these 
applications, historical data are the strategic asset 
being exploited. 

Out-of-stock conditions also create a limitation for 
KDS. Some of the errors arise when the forecast would 
be accurate if only the store did not run out of 
inventory. So we are more likely to observe errors 
associated with overstocking than with understock- 
ing. The truncation of errors associated with this issue 
is very difficult to handle. Cooper et al. (1999) discuss 
some aspects of the issue, but a full treatment is not 
possible within either the statistical model or the 
dataminer. 

The other obvious limitation deals with uses of KDS 
for finding model misspecification in PromoCastTM. 
Our design is one that focuses on using KDS on 
information that is not easily incorporated into a 
traditional market-response model. To now turn 
around and say that we could use KDS to find 
variables that could be included in the specification of 
PromoCastTM is somewhat awkward. KDS is best used 
in the discrete-variable space, PromoCastTM in the 
continuous variable space. There are, however, many 
exceptions. PromoCastTM uses indicator variables for 
ads and displays and holiday effects. KDS breaks the 
continuous variable TPR into bins for "Very High 
TPR" and the like. As such, it is possible to use KDS on 
such "binned" variables as a way to look more sys- 
tematically at model residuals (for possible misspeci- 
fication). What we really advocate, however, is that 
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researchers use any tool available to study the resid- 
uals from their models. Learning from what is left 
behind in model specification is a fundamentally 
important part of model building. KDS does this 
naturally when what is excluded is of a different data 
type (discrete data) than that used in the base model 
(continuous data). 

Conclusions 
The sequential application of statistical forecaster 
and dataminer provides a natural way to use a 
broader set of information that easily can be used by 
either. Sure, it is theoretically possible to use mar- 
ket-response models to incorporate the 28,000 rules 
we found in this pilot market. Sure, it is theoreti- 
cally possible to discretize all the variables used in 
the market-response model so that they could be 
analyzed with the dataminer. But we feel strongly 
that we are better off using each of the techniques 
where each best fits. We feel the benefits demon- 
strated so far justify our continued exploration of 
these techniques.7 
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Appendix-Algorithm Description and Analysis 
KDS works by a progressive rule specialization. The nth iteration 
creates all the n-term rules existing in the input database. Rule 
coverage (i.e., the number of records "covered" by a rule) must 
decrease monotonically at each iteration. The process is halted as 
soon as further specialization leads to coverage below the spec- 
ified minimium suipport for all new generated rules. Only observed 
combinations of features are considered when building rules, 
which is much more efficient than algorithms that process all 
theoretical combinations of features (Clark and Niblett 1989, 
Cohen 1995). R[N] represents the set of N-term rules. The set S 
contains all the N-term rule combinations assigned to the current 
record. For instance, say the input record is: {a = 10, b = low, c 
= john}, then the set S at the second iteration (N = 2) contains all 
two-term conjunctions: {a = 10 & b = low, a = 10 & c = john, 
b = low & c = john}. Likewise, the set T is constructed from the 
elements of S. For instance, for the element {a = 10, b = low} of 

S, T would be: {{a = 101, {b = low}}, a set of (N - 1)-term 
patterns. The notation R[N].supp(X) specifies the popularity of 
the pattern X in the rule set R[N].X.class is the class value of the 
input example X, while R[N].class(Y, C) is the frequency of the 
class C for the rule Y in the rule set R[N]. 

The rule generation performs a total of k iterations, where k is 
either the maximum number of terms in the patterns before the 
coverage drops below the minimum support value (for all the new 
rules), or the maximum number of terms in the rule antecedents 
that we feel able to interpret. The upper bound for k is the 
number of independent variables. Therefore, the "while loop" in 
the algorithm has a cost that is linear in k and e, where e is the 
number of input examples. The nth iteration exploits the results 
of the (n - 1)th iteration. For instance, to add the new pattern "a 
& b & c" at the third iteration, it is necessary (but not sufficient) 
that "a & b", "a & c", "b & c" are all previously supported. The 
size s of the set S in the algorithm (shown in Exhibit 1 at nth 

Exhibit 1 

I = input database; 
N = 1; 
Flag = True; 
While Flag 

Flag = False; 
R[N] = 0; 
For each record W in I do 
S = {N-term pafterns from W}; 
For each X in S do 
T = {(N - 1)-term pafterns from XI; 
If (N = 1) or 
(all elements in T are supported) 

then 
Flag = True; 
If X E R[N] then 
R[N].supp(X) = R[N].supp(X) + 1; 

Else 
R[N] = R[N] U {X}; 
R[N].supp(X) = 1; 

End If 
Increment R[N].class(X, X.class); 

End If 
End For 

Pruning by minimum support 
For each Y in R[N] do 

If R[N].supp(Y) < min-supp then 
R[N] = R[N] - Y; 

End If 
End For 
N = N + 1; 

End While 
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iteration) is a!/[n!(a - n)!], where a is the total number of 
independent variables. The set S contains the candidates for new 

patterns to be added to the rule set. For each element of S the set 

of subpatterns is generated and stored in the set T whose size we 
refer to as t. For each element of T a lookup (with logarithmic 

cost) is executed until one element is not supported or all the 

elements have been verified to be supported. In the worst case, t 

lookups have to be performed for each of the s elements of S. The 

total cost becomes linear in k, e, s, t and log(l) where I is the size 

of the R[n - 1] set at the nth iteration. Furthermore, for each 
iteration a pruning loop is executed to remove all new rules that 

are not supported (i.e., had fewer instances than the user- 

definable, minimum-support threshold). This component has a 

minimal cost that can be omitted in the cost computation. In the 

previous computation s is a function of the number of combina- 
tions of independent variables, so the cost of the KDS rule- 

generation phase increases roughly with the square of the size of 

the variable space. The total cost is not a function of the number 

of features (i.e., number of levels of a nominally valued indepen- 
dent variable). This makes KDS more suitable for databases with 

a large number of records and a small number of independent 
variables, each of which has a large number of levels or features. 
The cost independence from the number of features makes KDS 
noise tolerant. Noise in databases results in some features with 
minimal support. The bottom-up induction style of KDS leads to 

very little additional work for infrequently supported features 
(recall that no "for each possible feature" loop takes place in the 

algorithm). Furthermore, poorly supported features are promptly 
dropped by the pruning loop at the end of each iteration. Noise 

represents a difficult issue for many induction algorithms whose 

cost increases an order of magnitude in presence of noisy data. 

Some algorithm's performance worsens to being a quartic func- 

tion (e4) in noisy domains, where e is the number of training 

examples (Cohen 1995). 
In KDS, rule ranking occurs during the classification of new 

examples. Rule selection is actually executed prior to the ranking; 

only rules applying to the example to be classified are selected. 
This greatly reduces the rule search space for the rule-ranking 

activity. The rule-selection algorithm described above has a small 

cost, which is the cost of looking up each feature of the input 

example in the one-term rule set. Then an upward search of the 
rule network will mark all parent rules. This last operation has 

negligible cost close due to the indexed structure of the pattern 
network. This leads to a total cost for each new record to be 
classified being a linear function of v and log(l) where v is the 
number of independent variables and I is the total number of 

one-term patterns in the rule network. 
The execution of KDS on our large database took a total of five 

hours with a tightly coupled implementation with DB2? in a 

Windows NT system. This is a substantial improvement compared 
to the 21 days (and still counting) for the decoupled Ripper 
implementation. 
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