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ABSTRACT 
A drawback of most traditional data mining methods is that they 
do not leverage prior knowledge of users. In many business 
settings, managers and analysts have significant intuition based on 
several years of experience.  In prior work [11, 12] we proposed 
methods that could discover unexpected patterns in data by using 
this domain knowledge in a systematic manner. In this paper we 
continue our focus on discovering unexpected patterns and 
propose new methods for discovering a minimal set of unexpected 
patterns that discover orders of magnitude fewer patterns and yet 
retain most of the truly interesting ones. We demonstrate the 
strengths of this approach experimentally using a case study 
application in a marketing domain.  
 

1. INTRODUCTION 
A well-known criticism of many rule discovery algorithms in data 
mining is that they generate too many patterns, many of which are 
obvious or irrelevant. It stands to reason that more effective 
methods are needed to discover fewer and more relevant patterns 
from data and KDD researchers have addressed this issue 
extensively. One way to approach this problem is by focusing on 
discovering unexpected patterns [4, 5, 6, 7, 11, 12, 13, 14, 17, 18], 
where unexpectedness of discovered patterns is usually defined 
relative to a system of prior expectations. In particular, we 
proposed in our prior research [11, 12] a characterization of 
unexpectedness of a discovered pattern relative to the system of 
prior beliefs and developed efficient algorithms for the discovery 
of these unexpected patterns.  
 
Although these algorithms generate significantly fewer and more 
relevant patterns, still many of the generated unexpected patterns 
are redundant in the sense that they can be derived from other 
discovered unexpected patterns. Therefore, this paper focuses on 
 
 

 

minimality of unexpected patterns and on efficient algorithms that 
discover such minimal patterns. The power of the proposed 
approach lies in combining two independent concepts of 
unexpectedness and minimality of a set of patterns into one 
integrated concept that provides for the discovery of small but 
important sets of interesting patterns. 
 
The concept of minimality has been studied in AI for a long time 
and more recently in KDD. In particular in an early influential 
work [9], Mitchell addresses the problem of learning 
generalizations of a set of objects and presents a unifying 
approach to the problem of generalizing knowledge by viewing 
the generalization task as a search problem. In the context of 
discovering a minimal set of rules in data mining, the approach 
presented in [9] has the limitation that in most cases it may not be 
possible to have training examples that are classified into known 
generalizations. Therefore, rather than learning these 
generalization relationships among different objects, it is 
necessary to define them. Recent characterizations of various 
notions of minimality in the KDD literature take this approach 
and we describe them below.  
 
In the KDD literature [2, 3, 8, 15, 16, 20] provide alternate 
approaches to characterizing a minimal set of discovered rules. In 
particular, [2] presents an approach that finds the “most 
interesting rules”, defined as rules that lie on a support and 
confidence frontier. Further, [2] proves that these rules necessarily 
contain the strongest rules discovered using several objective 
criteria other than just confidence and support.  
 
In [16] several heuristics for pruning large numbers of association 
rules has been proposed. One of these heuristics prunes out certain 
refinements of rules, thus, hinting at the concept of minimality of 
a set of rules. However, [16] focuses exclusively on heuristics that 
prune redundant rules from a discovered set of rules and does not 
explore the concept of minimality formally, nor proposes any 
algorithms for discovering a minimal set of patterns.  
 
In [8] a technique is presented to prune and then summarize an 
already discovered set of association rules. In particular, [8] 
defines the concept of direction-setting rules and demonstrates 
how non-direction-setting rules can be inferred from them. 
Therefore, the set of direction-setting rules constitutes a set of 
rules that are “minimal” in some sense. This work is related to 
[16] in the sense that certain rule refinements are pruned out in the 
approach in [8] and therefore, they are not direction-setting. 
However, the method presented in [8] is different from [16] and 
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from our approach in the sense that not all refined rules are non-
direction setting according to [8]. Moreover, [8] focuses on 
pruning already discovered rules and does not address the issue of 
direct discovery of minimal sets.  
 
An approach to eliminating redundant association rules is 
presented in [20]. In particular, [20] introduces a concept of the 
“structural cover” for association rules and presents post-
processing algorithms to find the structural cover. In this paper 
we, present an alternative formal characterization of the minimal 
set of patterns that corresponds to structural covers of [20] for the 
association rules but is also broader and applicable to more 
general classes of rules. Moreover, [20] focuses on pruning 
already discovered rules and does not address the issue of direct 
discovery of minimal sets.  
 
Finally, the work of [3] and [15] is also related to the problem of 
discovering minimal sets of rules. In particular, [3] and [15] 
provide methods for eliminating rules such that the support and/or 
confidence values of these rules are not unexpected with respect 
to the support and confidence values of previously discovered 
rules. However, this work is only marginally related to our 
approach because we focus on a more general definition of 
minimality that does not directly depend on confidence and 
support of discovered rules. In this paper we present a new 
approach for characterizing minimality of a set of unexpected 
patterns and present efficient methods to discover minimal 
unexpected patterns. 
 
In Section 2 we present a few preliminaries regarding 
unexpectedness, followed by a characterization of minimality of 
unexpected patterns in Section 3. We then present two algorithms 
(one in detail and a sketch of the second, for lack of space) for 
discovering minimal unexpected patterns in Section 4. We present 
experimental results and discussion in Section 5. 

 

2. PRELIMINARIES - UNEXPECTEDNESS 
We define an atomic condition to be a proposition of the form 
value1 ≤ attribute ≤ value2 for ordered attributes and attribute = 
value for unordered attributes where value, value1, value2 belong 
to the set of distinct values taken by attribute in dataset D. In this 
paper we consider rules and beliefs defined as extended 
association rules of the form X → A, where X is the conjunction of 
atomic conditions (an itemset) and A is an atomic condition.  
 
We follow the definition of unexpectedness from [11] and define 
the rule A → B to be unexpected with respect to the belief X → Y 
on dataset D if the following conditions hold: 

(a) B AND Y |= FALSE, i.e., B and Y logically contradict 
each other.  

(b) A AND X holds on a statistically large subset of tuples 
in D1. We use the term “intersection of a rule with respect 
to a belief” to refer to this subset. This intersection defines 
the subset of tuples in D in which the belief and the rule 
are both “applicable” in the sense that the antecedents of 

                                                                 
1 One of the ways to define “large subset of tuples” is through the 
user-specified support threshold value. 

the belief and the rule are both true on all the tuples in this 
subset. 

(c) The rule A, X → B holds (with the same level of 
threshold support and confidence). Since condition (a) 
constrains B and Y to logically contradict each other, it 
logically follows that the rule A, X → ¬Y holds.  �
   

A key assumption in this definition, motivated in [10, 11], is that 
of the monotonicity of beliefs. In particular, if we have a belief Y 
→ B that we expect to hold on a dataset D, then monotonicity 
assumes the belief should also be expected to hold on any 
statistically large subset of D.  
 
Given the definition of unexpectedness, [11] presents algorithm 
ZoomUR that discovers all the unexpected rules with respect to a 
set of beliefs. In the first phase of ZoomUR, ZoominUR discovers 
all unexpected patterns that are refinements to any belief. More 
specifically, given any belief X → Y, ZoominUR discovers all 
unexpected rules of the form X, A → B such that B AND Y |= 
FALSE. We refer to such rules as “unexpected refinements”. In 
the second phase of ZoomUR, starting from all the unexpected 
refinements, ZoomoutUR discovers more general rules 
(generalizations) that are also unexpected. As demonstrated in 
[10, 11], this approach generated far fewer and more interesting 
patterns than traditional approaches.  
 

3. MINIMAL SET OF PATTERNS 
Though ZoomUR discovers only unexpected rules and also far 
fewer rules than Apriori [1],2 it still discovers large numbers of 
rules many of which are redundant in the sense that they can be 
inferred from other discovered rules under the monotonicity 
assumption stated in Section 2. In this sense, some of the 
discovered unexpected patterns are expected with respect to other 
discovered patterns and, thus, can and should be eliminated. For 
example, consider belief diaper → beer and two unexpected 
patterns diaper, weekday → not_beer and diaper, weekday, male 
→ not_beer. Then the second unexpected pattern can be inferred 
from the first one under the monotonicity assumption. To address 
this issue, we formally characterize minimality of a set of 
unexpected patterns based on the monotonicity assumption. In 
order to do this, we first need to define inference of one rule from 
another under monotonicity. 
 
3.1 Inference Under Monotonicity Assumption  
Before introducing minimal rules, we need to define formally 
which rules can be inferred to hold on a dataset due to the 
monotonicity assumption.  
 
Definition. Rule  (A → B) |=M (C → D) if  
1. C |= A, and 
2. D = B. o 
 
In this definition, rule C → B can be inferred from rule A → B 
under the monotonicity assumption because if rule A → B holds 
on some data and C |= A then, by the monotonicity assumption, A 
→ B should hold on the subset of data defined by C.   

                                                                 
2 This is not surprising since the objective of Apriori is to discover 
all strong rules, while ZoomUR discovers only unexpected rules. 
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Example. Consider the rules diaper, weekday → not_beer and 
diaper, weekday, male → not_beer. Since diaper, weekday, male 
|= diaper, weekday it follows that the rule diaper, weekday, male 
→ not_beer is implied from the rule diaper, weekday → not_beer  
under the monotonicity assumption (diaper, weekday → not_beer  
|=M diaper, weekday, male → not_beer), and therefore is 
redundant in that sense.  o 
 
We next present a definition for the minimal set of rules, followed 
by the definition of the minimal set of unexpected patterns. 
 
3.2 Minimal Set of Rules 
Definition. Y is the minimal set of X if and only if the following 
conditions hold: 
(1) Y ⊆ X.  
(2) ∀ xi ∈ X, ∃ yi ∈ Y | yi |=M xi.  
(3) ∀ y1 , y2 ∈ Y, y1 |≠M y2. 
 
Proposition 3.1. For any set of rules X, the minimal set of X is 
unique. 
Proof. To prove this proposition, we define a directed graph 
G=(V, E) as follows. The set of nodes V consists of all the rules 
from X. Given two nodes n1 = A → B and n2 = C → D from V, 
there is an edge from node n1 to node n2 in E if A → B |=M C → 
D. Then it is easy to see that the minimal set of rules for X 
consists of all the nodes of G having no incoming edges (in-
degrees of these nodes are 0). Then the claim follows from the 
observation that the set G is unique. o 
 
We would like to reiterate that we use |=M instead of classical 
logical implication |= in the definition above because the concept 
of mininmality, as defined in this paper, is based exclusively on 
the inference under the monotonicity assumption as specified in 
Section 3.1. Given the above definition, we introduce the minimal 
set of unexpected patterns as follows. 
 
Definition. If B is a belief and X is the set of all unexpected 
patterns with respect to B, the minimal set of unexpected patterns 
with respect to B is the minimal set of X. o 
 

4. DISCOVERING THE MINIMAL SET OF 
UNEXPECTED PATTERNS 
In Section 4.1 we present an algorithm MinZoominUR that 
discovers the minimal set of unexpected refinements. We describe 
this algorithm because in many applications we are interested only 
in refinements of beliefs and also because MinZoominUR 
illustrates some important points used in MinZoomUR. We then 
present in Section 4.2 an overview of MinZoomUR, an efficient 
algorithm for discovering the minimal set of unexpected patterns.  
 
The inputs to algorithms MinZoominUR and MinZoomUR are: 
(1) a set of beliefs, B, (2) the dataset D, (3) minimum support and 
confidence values minsup and minconf and (4) minimum and 
maximum width for all ordered attributes. In the case of ordered 
attributes the width of any condition of the form value1 ≤ attribute 

≤ value2 is defined to be value2 - value1. We take as user inputs 
the minimum and maximum width for all ordered attributes. Note 
that this is not a restrictive assumption in any way since the 
default can be the smallest width and largest width respectively 
for these two parameters. 
 
4.1  Discovering Minimal Unexpected 
Refinements of Beliefs 
In this section we present MinZoominUR, an algorithm for 
discovering the minimal set of unexpected refinements to a set of 
beliefs.  
 
Consider the belief body → head, having the structure specified in 
Section 2. We use the term "CONTR(head)"  to refer to the set of 
atomic conditions that contradict the atomic condition specified 
by head.  Assume that v1, v2,...,vk are the set of unique values 
(sorted in ascending order if the attribute a is ordered) that  a 
takes on in D. CONTR(head) is generated as follows: 

 (1) If the head of the belief is of the form "value1 ≤ attribute 
≤ value2"  (attribute is ordered), any condition of the form 
"value3 ≤ attribute ≤ value4"∈ CONTR(head) if the ranges 
[value1, value2] and [value3, value4] do not overlap. 
(2) If the head of the belief is of the form "attribute = val" 
(attribute is unordered), any condition of the form "attribute 
= vp"∈ CONTR(head) if vp ∈ { v1, v2,...,vk } and vp ≠ val; 

 
Algorithm MinZoominUR is based on Apriori [1] and ZoomUR 
[11] with several major differences. First, unlike in Apriori, 
generation of large itemsets starts with a set of beliefs that seed 
the search. Second, unlike in Apriori and ZoomUR, 
MinZoominUR does not generate those itemsets that are 
guaranteed to produce non-minimal rules. Third, rule generation 
process is integrated into the itemset generation part of the 
algorithm – this process is immaterial for Apriori and ZoomUR 
but results in significant efficiency improvements for 
MinZoominUR.  
 
Before presenting MinZoominUR, we first present a broad 
overview of the algorithm. Each iteration of MinZoominUR 
generates itemsets in the following manner. In the k-th iteration 
we generate itemsets of the form {C,body,P}, where C ∈ 
CONTR(head) and P is a conjunction of k atomic conditions. 
Observe that to determine the confidence of the rule body, P → C, 
the supports of both the itemsets {C,body,P} and {body,P} will 
have to be determined. Hence in the k-th iteration of generating 
large itemsets, two sets of candidate itemsets are considered for 
support determination: 
 
(1) The set Ck of candidate itemsets. Each itemset in Ck (e.g. 
{C,body,P}) contains  
 (i) a condition that contradicts the head of belief, (i.e. any
       condition C ∈ CONTR(head)),  
 (ii) the body {body} of the belief,  and  
 (iii) k other atomic conditions (P is a conjunction of k atomic
        conditions). 
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Inputs: Beliefs Bel_Set, Dataset D, minwidth and maxwidth for all ordered attributes ORD and 
thresholds min_support and min_conf 
Outputs: For each belief, B, MinUnexp(B) 

 1 forall beliefs B ∈ Bel_Set { 
 2  MinUnexp(B) = {} 
 3     C0 = { {x,body(B)} | x ∈ CONTR(head(B)) }; 
 4     C0’ = {{body(B)}};  
 5     k=0 
 6     while (Ck != ∅ ) do { 
 7         forall c ∈ Ck ∪ Ck’, compute support(c) 
 8         Lk = {x| x ∈ Ck, support(x) ≥ min_support } 
 9         Lk’ = {x| x ∈ Ck’, support(x) ≥ min_support} 
 10        forall (x ∈ Lk) { 
 11             Let a = x ∩ CONTR(head(B)) /* this intersection is a single element */ 
 12          rule_conf = support(x)/support(x-a) 
 13      if (rule_conf > min_conf) { 
 14        MinUnexp(B) = MinUnexp(B) ∪ {x – a →a} 
 15    Lk = Lk - x 
 16       }  
 17      } 
 18  k++ 
 19  Ck = generate_new_candidates(Lk-1, B)  
 20  Ck’ = generate_bodies(Ck , B) 
 21     }  
 22  forall x ∈ MinUnexp(B) { 
 23      Other_unexp = MinUnexp(B)-x 
 24        if (∃ y ∈ Other_unexp | y |=M x) { 
 25        MinUnexp(B) = MinUnexp(B) - {x} 
 26      } 
 27   } 
 28 } 

Figure 4.1 Algorithm MinZoominUR 

 
(2) A set Ck' of additional candidates. Each itemset in Ck' (e.g. 
{X,P}) is generated from an itemset in Ck by dropping the 
condition, C, that contradicts the head of the belief. 
 
In each iteration, minimal unexpected rules are generated from the 
set of large itemsets. The main idea in MinZoominUR is that if an 
itemset generates an unexpected rule, it is deleted from 
consideration and therefore no superset of this itemset is even 
considered in subsequent iterations. As we prove in Theorem 4.1, 
this step avoids generation of itemsets producing non-minimal 
rules and significantly improves the efficiency of the algorithm.  
 
We explain the steps of MinZoominUR in Fig. 4.1 now. The 
following is a list of notations that are used in describing the 
algorithm:  
• UNORD  is the set of unordered attributes. 
• ORD is the set of ordered attributes. 
• minwidth(a) and maxwidth(a) are minimum and maximum 

widths for ordered attribute a. 
• Attributes(x) is the set of all attributes present in any of the 

conditions in itemset x. 
• Values(a) is the set of distinct values the attribute a takes in 

the dataset D. 
 

First, given a belief, B, the set of atomic conditions that contradict 
the head of the belief, CONTR(head(B)), is computed (as 
described previously). Then, the first candidate itemsets generated 
in C

0
 (step 3) will each contain the body of the belief and a 

condition from CONTR(head(B)).  
 
Steps (6) through (20) in Fig. 4.1 are iterative: Steps 7 through 9 
determine the supports in dataset D for all the candidate itemsets 
currently being considered and selects the large itemsets Lk and 
Lk’. Each itemset in Lk contains the body and the head of a 
potentially unexpected rule, while each itemset in Lk’ contains 
only the body of the potentially unexpected rule. Steps 10 through 
17 generate unexpected rules such that large itemsets that 
contribute to unexpected rules are subsequently deleted in Step 
15. Specifically, for each large itemset in Lk, if the unexpected 
refinement rule that is generated from the itemset has sufficient 
confidence, then two actions are performed: 
1. Step 14 adds this rule to the set of potentially minimal 

unexpected refinements. 
2. Step 15 deletes the corresponding itemset from Lk since any 

itemset that is a superset of this itemset can only generate 
unexpected refinements that can be monotonically inferred 
from the new rule generated in step 14.  
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In step (19), function generate_new_candidates(L
k-1

, B) generates 
the set Ck of new candidate itemsets to be considered in the next 
pass from the previously determined set of large itemsets,  Lk-1,  
with respect to the belief B (“x → y”) as described in ZoomUR 
[11]. In general we generate C1 from L0 by adding additional 
conditions of the form attribute = value for unordered attributes 
or of the form value1 ≤ attribute ≤ value2 for ordered attributes to 
each of the itemsets in L

0
. Incremental generation of C

k
 from L

k-1 

when k > 1 is similar to the apriori-gen function described in [1]. 
In step (20), as described previously, we would also need the 
support of additional candidate itemsets in Ck'  to determine the 
confidence of unexpected rules that will be generated. The 
function generate_bodies(Ck,B) generates Ck' by considering 
each itemset in Ck and dropping the condition that contradicts the 
head of the belief and adding the resulting itemset in Ck'.  
 
Steps (22 – 27) are needed to detect any remaining non-minimal 
rules that arise due to the following special case of certain 
itemsets containing unordered attributes. To illustrate this special 
case, consider the following two itemsets: {{a=1}, {5 ≤ b ≤ 10}} 
and {{a=1}, {7 ≤ b ≤ 8}}. The special case is that neither of these 
sets is a “superset” of the other, yet (5 ≤ b ≤ 10 → a=1) |=M  (7 ≤ b 
≤ 8 → a=1) since (7 ≤ b ≤ 8) |= (5 ≤ b ≤ 10). Therefore, the rule 7 
≤ b ≤ 8 → a=1 should be eliminated in order to produce the 
minimal set of unexpected rules. Since Steps (6 – 21) of the 
algorithm do not eliminate such rules, the additional Steps (22 – 
27) do this. Note that in the case of only unordered attributes in 
the itemsets, Steps (22 – 27) of the algorithm are not needed since 
MinUnexp(B) after Step 21 is guaranteed to be minimal (see the 
proof of Theorem 4.1). 
 
The computational complexity of Steps (1 – 21) is determined by 
the total number of candidate itemsets K generated in Steps (19 - 
20) taken over all the iterations of the While-loop. The 
computational complexity of the elimination procedure in Steps 
(22 – 27) is O(n2), where n is the size of the set MinUnexp(B). In 
practice K >> n2. Therefore, the bottleneck of MinZoominUR 
algorithm lies in Steps (6 – 21). Moreover, the complexity of 
MinZoominUR in the worst case is comparable to the worst-case 
complexity of Apriori that is bounded by O(||C|| * ||D||), where 
||C|| denotes the sum of the sizes of candidates considered, and 
||D|| denotes the size of the database [1]. However, in the average 
case, the computational complexity of MinZoominUR is 
significantly lower than that of Apriori. This is the case because 
the average number of candidates considered in MinZoominUR is 
significantly lower than that for Apriori due to (a) minimality-
based elimination procedure, and (b) presence of the initial set of 
beliefs that seed the search process. 
 
Observe that a key strength of MinZoominUR, compared to 
ZoomUR [11] and Apriori [1], is that rule discovery is integrated 
into the itemset generation procedure in such a way that it can 
greatly reduce the number of itemsets generated in subsequent 
iterations.  
 
Theorem 4.1. For any belief, B, MinZoominUR discovers the 
minimal set of unexpected rules that are refinements to the belief.  

Sketch of the Proof. We will first show that for the case where 
there are unordered attributes only, MinZoominUR generates the 
minimal set of unexpected patterns without needing to apply the 

minimal filter (Steps 22 through 27 of Figure 4.1). For unordered 
attributes only, it is easy to see that a rule X1=x1, X2=x2,…, Xn=xn 
→ Y = y1 is non-minimal if and only if there is a rule of the form 
Z → Y = y1,  where Z ⊂ {X1=x1, X2=x2,…, Xn=xn}3. From this 
observation it can be shown that, as done in MinZoominUR, 
itemset deletion immediately following the generation of an 
unexpected rule from the itemset is adequate to guarantee the 
generation of the minimal set of unexpected refinements. 
However there is a special case involving ordered attributes that 
cannot guarantee only minimal rules before Steps 22-27. This 
special case arises since a syntactic subset check cannot capture 
containment when dealing with ranges of values for ordered 
attributes. An example of this special case was given above in 
Section 4.2. Hence the filter in Steps 22-27 removes any non-
minimal rules remaining. A detailed proof of this theorem is in 
[10].  o 
 
In this section we focused on discovering minimal set of 
unexpected refinements of beliefs. In the next section we present 
the main ideas of MinZoomUR, an algorithm that discovers the 
minimal set of unexpected patterns. 
 
4.2  Discovering Minimal Unexpected Patterns  
Due to the space limitation, we present only an overview of the 
discovery algorithm. The complete description can be found in 
[10]. First we present a few preliminaries. We use the term 
parents(x) to denote the set of all subsets of x that contain the 
body of the belief and one condition that contradicts the head of 
the belief considered in previous iterations4 during the candidate 
generation phase of the algorithm. Specifically, 

parents(x) = { a | a ⊂ x, body(B) ⊂ a, c ∈ CONTR(head(B)), c 
∈ a} 

An itemset y is said to be a parent of x if y ∈ parents(x). 
 
We use the term zoomin rules  to denote unexpected rules that are 
refinements to beliefs and zoomout rules  for unexpected rules that 
are more general unexpected rules. The large itemset x is said to 
generate a zoomin rule if confidence  (x - c → c) > min_conf, 
where c ∈ CONTR(head(B)). The large itemset x is said to 
generate a zoomout rule if x generates a zoomin rule x - c → c and 
confidence( x - c - d → c) > min_conf, where c ∈ 
CONTR(head(B)), d ⊆ body(B) and d is not empty.  
 
Associated with each itemset, x, are two attributes: x.rule, that 
keeps track of whether a zoomin rule is generated from x, and 
x.dropped_subsets , which keeps track of the subsets of body(B) 
that are dropped during the discovery of zoomout rules. 
 
Unlike what was done in MinZoominUR, an itemset that 
generates a zoomin rule in MinZoomUR cannot always be deleted 
from subsequent consideration since it is possible for minimal 
zoomout rules to be derived from non-minimal zoomin rules. 

                                                                 
3 Note that this “syntactic” subset property is not true when 
dealing with ordered attributes, which is why the minimal filter in 
Steps 22-27 are necessary. 
4 Recall that the candidate generation phase of these algorithms 
(Apriori, MinZoominUR and MinZoomUR) is iterative such that 
itemsets in subsequent iterations have greater cardinality (number 
of items).  
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Consider the following example. For a belief a, b → x, let a, b, c 
→ y and a, b, c, d → y be two zoomin rules. Though a, b, c, d → y 
is a non-minimal zoomin rule, the rule may result in a zoomout 
rule such as b, c, d → y which may belong to the minimal set of 
unexpected rules.  
 
Extending this example one more step, we observe that the 
zoomout rule b, c, d → y can, however, be guaranteed to be non-
minimal if the first zoomin rule a, b, c → y resulted in a zoomout 
rule of the form p, c → y such that b, c, d |= p, c where p is a 
proper subset  of the body of the belief. Examples of such p are 
{b} and {} corresponding to the zoomout rules b, c → y and  c → 
y respectively (generated from a, b, c → y). However if the first 
zoomin rule generated only the zoomout rule a, c → y, it may still 
be possible for the zoomout rule b, c → y to be minimal since b, c, 
d |≠ a, c. 
 
The discovery strategy of MinZoomUR is based on the following 
conditions under which some generated rules are guaranteed to be 
non-minimal and hence can be excluded from the minimal set. 
These exclusion rules are integrated into the itemset generation 
phase of the algorithm (similar to the single exclusion rule 
integrated into MinZoominUR) and thus substantially reduce the 
number of itemsets considered in subsequent iterations. [10] 
proves that these conditions do indeed exclude only non-minimal 
rules, hence we only state these rules here for lack of space. The 
“exclusion rules” used in MinZoomUR are: 
1. If x and y are two large itemsets such that x is a parent of y 

and x.rule=1 rule then the zoomin rule generated from y 
cannot be minimal. This is the only exclusion rule used 
previously in algorithm MinZoominUR. 

2. If x is a large itemset that generates a zoomin rule and some 
zoomout rules, then the zoomin rule generated cannot be 
minimal.  

3. If x is a large itemset that generates zoomout rules p and q 
and elem_p ∈ x.dropped_subsets(p) 5 and elem_q ∈ 
x.dropped_subsets(q) and  elem_p ⊂ elem_q then p cannot be 
minimal.  

4. If x and y are two large itemsets such that x is a parent of y, 
zoomout rules generated from y generated by dropping any 
subset, p, from the body of the belief such that p is a subset 
of some element belonging to x.dropped_subsets  cannot be 
minimal rules.  

MinZoomUR generates candidate itemsets in the same manner as 
in MinZoominUR. A main difference in the algorithms is that 
MinZoomUR considers zoomout rules also for a given itemset 
immediately after the itemset generates a zoomin rule. This is 
necessary because some of the “exclusion rules” applied to an 
unexpected rule generated depends on knowing the zoomout rules 
generated for that itemset and its parents. After the four exclusion 
rules are applied, MinZoomUR also applies the minimal filter 
similar to the one specified in lines (22) – (27) of MinZoominUR. 
Moreover, as shown in (10), this minimal filter is necessary only 
when there are ordered attributes. In the case when all the 
attribures are unordered, the four exclusion rules are also 

                                                                 
5 For belief B and itemset x, if p is a single zoomout rule, then 
x.dropped_subsets(p) will contain only one element which is the 
subset of body(B) that was dropped to create the zoomout rule. 

sufficient conditions for generating only minimal rules (hence no 
minimal filter is necessary at the end). 

In summary, the following theorem states, MinZoomUR discovers 
all the minimal unexpected patterns. The proof of this theorem 
can be found in [10]. 
 
Theorem 4.2. For any belief MinZoomUR discovers the minimal 
set of unexpected patterns. 
 
We would also like to note that the classical notion of 
“minimality” often assumes that it is possible to reconstruct the 
set of all objects having certain property from the minimal set of 
objects having this property. In our case also, the set of all 
unexpected patterns can be reconstructed from the minimal set of 
unexpected patterns. However, this can be done only using a 
computationally intensive process that requires extensive data 
manipulation, rather than through an immediate reconstruction 
procedure that does not require any additional data access. This 
limitation of our approach is the result of a development of 
efficient search algorithms that directly discover the minimal set 
of unexpected patterns without even examining all unexpected 
patterns. Moreover, this limitation can also be circumvented by 
letting the domain expert examine the set of minimal unexpected 
patterns (that is small), select the most interesting minimal 
patterns, and use the system to automatically refine them to 
discover all the unexpected patterns obtained from this selected 
set.  
 

5. EXPERIMENTS 
To illustrate the usefulness of our approach to discovering 
patterns, in this section we consider a case study application of 
applying the methods to consumer purchase data from a major 
market research firm. We pre-processed this data by combining 
different data sets (transaction data joined with demographics), 
made available to us into one table containing 38 different 
attributes and 313409 records. For simplicity in generating beliefs 
and in making comparisons to other techniques that generate 
association rules in these experiments we restrict our 
consideration to rules involving discrete attributes only. An initial 
set of 28 beliefs was generated by domain experts after examining 
300 rules generated from the data using methods described in 
[10]. In this section we present some results from applying 
MinZoomUR, ZoomUR [11] and Apriori [1] to this dataset 
starting from the initial set of beliefs where applicable. 
Specifically we compare these methods in terms of the number of 
rules generated and provide some guidelines as to when each may 
be applicable and also present results from scale-up experiments. 
We refer the reader to [10, 11] for several examples of truly 
unexpected discoveries from applying our unexpected pattern 
discovery methods.  
 
5.1 Number of Patterns Generated 
For a fixed minimum conf. level of 0.6, Figure 5.1 through 5.3 
show the number of patterns generated by Apriori, ZoomUR and 
MinZoomUR for varying levels of minimum  support. 
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Figure 5.1. Number of rules generated by Apriori 
 

Figure 5.2. Number of unexpected rules generated by ZoomUR 

Figure 5.3. Number of unexpected rules generated by MinZoomUR 
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Figure 5.4. Comparison of number of rules generated by Apriori, ZoomUR and MinZoomUR 

 
 
Apriori generated 50,000 to 250,000 rules even for reasonably 
high minimum support values. This is not surprising since the 
objective of Apriori is to discover all strong association rules. For 
reasonable values of support (5 to 10%), ZoomUR generates 50 to 
5000 unexpected patterns. MinZoomUR on the other hand 
generated only 15 to 700 unexpected patterns even for extremely 
low values for minimum support.  
 
Figure 5.4 illustrates the comparison of the three methods in terms 
of the number of generated rules. Due to the order of magnitude 
difference in the number of generated rules, the graph plots the 
number of rules generated using a logarithmic scale for the Y 
axis. 
 
As we would expect, as the minimum support threshold is 
lowered, all the methods discover a greater number of rules. 
Despite this, MinZoomUR discovers orders of magnitude fewer 
patterns than both ZoomUR and Apriori.  
 
The graphs in Figures 5.1 – 5.3 also demonstrate that a majority 
of patterns generated by ZoomUR are redundant. Observe that as 
the support threshold is lowered, the number of patterns generated 
by both ZoomUR and Apriori increase more than linearly. While 
this is the case for MinZoomUR in some regions, MinZoomUR 
plateaus out for lower regions of support. These plateaus signify 
that very few new minimal unexpected patterns are generated in 
these experiments despite the fact that in these experiments the 
number of unexpected patterns generated by ZoomUR keep 
increasing in that region. This observation coupled with the 
comparison in the number of rules generated indicate that 
MinZoomUR is indeed effective in removing redundant patterns, 
which represent a large majority of the set of all discovered 
patterns. 
 
5.2 Discussion  
Based on these experiments we discuss below some possible 
tradeoffs between these methods and provide some guidelines 
to their usage.  
 

The clear advantage of MinZoomUR over ZoomUR is that it 
generates far fewer patterns and yet retains most of the truly 
interesting ones as shown in [10]. Since ZoomUR generates all 
unexpected patterns for a belief and MinZoomUR generates the 
minimal set of unexpected patterns, MinZoomUR will always 
generate a subset of patterns that ZoomUR generates. As shown 
above, this subset can be very small (from 15 to a few hundred 
patterns for the entire set of beliefs, while ZoomUR can generate 
an order of magnitude more). Moreover, domain experts can 
selectively refine some of the patterns in the minimal set to obtain 
all unexpected patterns that are refinements to the selected 
pattern.  
 
The drawback of MinZoomUR compared to ZoomUR is that 
MinZoomUR makes an implicit assumption that minimal 
unexpected patterns are the “most interesting” patterns. From a 
subjective point of view this may not be necessarily true. Consider 
the following example of two unexpected patterns:  
• When coupons are available for cereals, they don't get used 

(confidence = 60%) 
• On weekends, when coupons are available for cereals they 

don't get used (confidence = 98%) 
MinZoomUR will not generate the second unexpected pattern 
since it is monotonically implied by the first pattern. However, the 
second unexpected pattern has a much higher confidence and may 
be considered "more unexpected" by some users. In a more 
general sense, the criteria implied by monotonicity and confidence 
are just two methods to rank unexpected patterns. In general there 
may be other criteria, some of which even depending on other 
subjective preferences of a user. Hence, since ZoomUR generates 
all the unexpected patterns, it is guaranteed to contain all the 
unexpected patterns that are "most unexpected" from any specific 
definition of the term "most unexpected". In the context of 
objective measures of interestingness, [2] discuss interesting 
approaches to finding the “most interesting” patterns. In 
subsequent work, we will study the issue of generating the "most 
unexpected patterns" by characterizing the degree of 
unexpectedness for patterns along the lines of [2, 18].  
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Figure 5.5. Execution time of MinZoomUR as a function of database size 

 
Given the relative advantages of the two methods to discovering 
unexpected patterns, a practical implication of the above is that 
ZoomUR can be used to generate unexpected patterns for high 
levels of support values and MinZoomUR can be used if patterns 
of very low support need to be generated. As shown in Figure 5.3, 
MinZoomUR generates a reasonable number of unexpected 
patterns even for extremely small values of minimum support, as 
low as even 0.5%. Also the support of some beliefs about a 
domain may be very low, perhaps reflective of some condition 
that occurs rarely. In such cases methods such as MinZoomUR 
that can find patterns at very low support values are necessary. As 
Figure 5.2 shows, for such low values of minimum support most 
methods may discover tens of thousands of patterns, resulting in a 
data mining problem of the second order. 
 
Apriori on the other hand has the drawback of generating a very 
large number of patterns since the objective is to discover all 
strong rules. As Figure 5.1 shows, for very low support values, 
this could easily result in a few million rules even on mid-sized 
problems.  
 
However there are two sides of the coin. Generating a very large 
number of patterns results in a data mining problem of a second 
order and is hence avoidable. At the same time it is possible that 
either of the two methods that seek unexpected patterns could 
miss other “interesting” patterns that may be unrelated to domain 
knowledge. However the set of patterns generated by Apriori can, 
trivially, be guaranteed to have all the interesting patterns since it 
has all patterns. We believe that this tradeoff is in some sense 
unavoidable since the problem of generating all interesting 
patterns (not just “unexpected”) is a difficult problem to solve. 
 
Below we experimentally examine the scalability of MinZoomUR 
with respect to the size of the database.  
 
5.3 Scalability with the size of the database  
For a sample of 10 beliefs, we ran MinZoomUR multiple times by 
varying the number of records in the dataset from 40,000 to 
200,000. Figure 5.5 shows the execution times for MinZoomUR. 

These experiments indicate that MinZoomUR scales, in the range 
considered, almost linearly with the size of the database.  
 
In this section we presented results pertaining to the effectiveness 
of MinZoomUR and compared it to Apriori and ZoomUR. We 
demonstrated that MinZoomUR can be used to discover far fewer 
patterns than Apriori and ZoomUR, yet finding most of the truly 
interesting patterns.   
 

6. CONCLUSIONS 
In this paper we presented a definition for the minimal set of 
unexpected patterns and proposed two algorithms for discovering 
the minimal set of such patterns. In a real-world application we 
demonstrated that the main discovery algorithm, MinZoomUR, 
discovered orders of magnitude fewer patterns than other 
comparable methods and yet retained most of the truly interesting 
patterns. We also discussed tradeoffs between various discovery 
methods and presented some guidelines for their usage. 
 
The power of this approach lies in combining two independent 
concepts of unexpectedness and minimality of a set of patterns 
into one integrated concept that provides for the discovery of 
small but important sets of interesting patterns. Moreover, 
MinZoominUR and MinZoomUR are efficient since they directly 
discover minimal unexpected patterns.  
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