
Appears in New Generation Computing 13 (1995) 287-312Induction of Logic Programs: FOIL and Related SystemsJ. R. QuinlanUniversity of SydneySydney Australia 2006quinlan@cs.su.oz.au and R. M. Cameron-JonesUniversity of TasmaniaLaunceston Australia 7250Michael.CameronJones@appcomp.utas.edu.auAbstract: foil is a �rst-order learning system that uses informationin a collection of relations to construct theories expressed in a dialectof Prolog. This paper provides an overview of the principal ideas andmethods used in the current version of the system, including two recentadditions. We present examples of tasks tackled by foil and of systemsthat adapt and extend its approach.1. IntroductionAll symbolic machine learning leads to the formulation or modi�cation of theories,so the language in which theories are expressed is an important consideration. First-order theory languages have been used for at least thirty years, as documentedby Sammut [1993]. Explanation-based generalisation systems [Mitchell, Keller andKedar-Cabelli, 1986; DeJong and Mooney, 1986] have always required them, but theearly and in
uential work of Shapiro [1983] and Sammut and Banerji [1986] alsoemployed them in an inductive learning context. Nevertheless, �rst-order empiricallearning, including what we now call inductive logic programming, did not attractwidespread attention until the 1990s.Training data in zeroth-order learning consists of attribute-value vectors, each be-longing to a known class. Theories are propositional functions from attribute valuesto classes and are expressed in forms such as decision trees [Quinlan, 1993]. In �rst-order learning, training data comprises a target relation, de�ned extensionally as aset of tuples of ground terms, and a set of background relations that might be de�nedextensionally or intensionally. The goal of learning is to construct a logic programthat constitutes an intensional de�nition of the target relation in terms of itself andthe background relations. Such theories permit recursion and limited quanti�cation,both advantageous when dealing with structured objects that are di�cult to describein attribute-value form. Where zeroth-order learning refers to examples and counter-examples of some concept, �rst-order learning refers analogously to tuples belonging,or not belonging, to the target relation. Since this is somewhat long-winded, we referto such tuples here as � or 	 tuples respectively.We say that a (complete) theory covers a tuple if the corresponding ground queryto the logic program succeeds. The goal of �rst-order learning can thus be stated asthe construction of a theory that covers all � tuples and no 	 tuples of the target1

relation. During learning, however, when only a partial theory exists, this de�nition of\covers" might be bent slightly; for instance, a recursive literal might be evaluated bylookup in the extensional de�nition of the target relation rather than by attemptingto execute the incomplete program.First-order learning systems can be grouped into two families. Most earlier systemssuch as mis [Shapiro, 1983], Marvin [Sammut and Banerji, 1986] , and Cigol [Mug-gleton and Buntine, 1988] are based on the successive revision method. A faultytheory is too general if it covers a 	 tuple and too speci�c if it fails to cover a �tuple. When a new tuple is treated erroneously, the query computation is examined,perhaps with the help of an oracle, to pinpoint the defect in the theory that is re-sponsible for the error. The theory is revised accordingly and the process continueswith the next tuple. This style of learning falls within the identi�cation in the limitparadigm [Gold, 1967] in which it is often possible to prove that systems will convergeon a correct theory after seeing su�cient training tuples. In practice, though, thisfamily of algorithms is computationally demanding and is e�ectively limited to tasksthat involve a small number of carefully chosen examples.The other family uses instead a separate-and-conquer strategy pioneered by Michalski[1980]. All training tuples are considered together and, at each iteration, a clause ofthe theory is found that covers some � tuples but no 	 tuples. The covered tuplesare then discarded and the process iterates until all � tuples are covered by at leastone clause. The family is further subdivided by the method used to �nd a suitableclause. Top-down systems such as foil [Quinlan, 1990] start with a general clausehead and add literals to the body until all 	 tuples are excluded. Bottom-up systemsexempli�ed by golem [Muggleton and Feng, 1992] form a most speci�c generalisationof a small subset of the � tuples, then generalise this further by dropping literals solong as the clause covers no 	 tuples. Both bottom-up and top-down systems havesuccessfully tackled large-scale tasks and have proven to be orders of magnitude fasterthan systems based on successive revision.This paper focusses on foil, an early member of the top-down group. We describethe learning task in more detail and outline key features of the system. Many of thesehave been reported previously (the best general references being [Quinlan, 1990] and[Cameron-Jones and Quinlan, 1994]) and so are only sketched here, but two morerecent additions to foil are treated at greater length. Examples of tasks investigatedwith foil, two of which are new, are presented. Numerous other systems have adaptedor extended elements of foil's approach and several of these related systems arereviewed. We �nish with some areas for further research.2. Description of foilAs mentioned above, input to foil includes information about relations. In commonwith many (but not all) �rst-order learning systems, foil requires the target and2

all background relations to be de�ned extensionally by sets of tuples of constants.Every relation argument has a speci�ed type; there may be many distinct types orall constants can be regarded as belonging to a single type. Although the intensionalde�nition learned from these extensional relations is derived from a particular set ofexamples, it is intended to be executable as a Prolog program in which the backgroundrelations may also be speci�ed intensionally by de�nitions rather than by sets ofground tuples. For example, foil might learn a de�nition of even integer from justthe integers in [0,10] and background relations de�ned over these integers, but thelearned de�nition, when used with intensional background relations, should be capableof deciding whether an arbitrary integer is even.The language in which foil expresses theories is a restricted form of Prolog thatomits cuts, fail, disjunctive goals, and functions other than constants. This last doesnot pose any particular problem since Prolog programmers are accustomed to de�ningfunctions by relations; a k-ary function can be represented by a k+1-argument relationin which the last argument gives the value of the function applied to the �rst karguments. Negated literals not(L(...)) are permitted, where not is interpreted asnegation by failure as in Prolog.As an example of a task, consider learning a de�nition of the membership relationon lists from a small world containing just the lists [], [1], [2], [3], [1,2], [2,3], and[1,2,3]. The target relation member(E,L) contains pairs whose �rst constant denotesan element that belongs in the list denoted by the second. In this small world thereare just ten tuples in member:h1,[1]i h2,[2]i h3,[3]i h1,[1,2]i h2,[1,2]ih2,[2,3]i h3,[2,3]i h1,[1,2,3]i h2,[1,2,3]i h3,[1,2,3]ithe �rst denoting that element 1 is a member of the list [1] and so on. As far asfoil is concerned, lists like [1,2,3] are just constants, so a background relation com-ponents(L,H,T) is required to show how to �nd the head H and tail T of a list L. Thetuples making up components areh[1],1,[]i h[2],2,[]i h[3],3,[]i h[1,2],1,[2]i h[2,3],2,[3]i h[1,2,3],1,[23]iwhere the �rst states that list [1] has head 1 and tail [].All the tuples that belong to the relation member are clearly � tuples. The corre-sponding 	 tuples needed by foil can be provided explicitly or, more commonly, canbe determined using the closed world assumption. That is, all tuples consisting ofan element and a list as above that do not appear explicitly in the relation membercan be assumed not to belong to the relation, implying that h1,[]i, h1,[2]i, h3,[1,2]iand so on are all 	 tuples. The number of such 	 tuples may be overwhelming whenthe target relation has high arity, so foil contains an optional facility to use only arandom sample of them. 3

Initialisation:theory := null programremaining := all � tuples of target relation RWhile remaining is not empty/* Grow a new clause */clause := R(A;B; :::) :-While clause covers 	 tuples of RFind appropriate literal(s) L (e.g. to exclude some 	 tuples)Add L to right-hand side of clauseRemove � tuples covered by clause from remainingAdd clause to theoryFigure 1: Outline of foil2.1 Overview of the learning algorithmAs outlined in Figure 1, foil uses the separate-and-conquer method, iteratively learn-ing a clause and removing the � tuples that it covers until none remain. A clauseis grown by successive specialisation, starting with the most general clause head andadding literals to the body until the clause does not cover any 	 tuples.Clause construction is guided by the bindings of the variables in the partial clausethat satisfy the clause body. If the clause contains k variables, a binding is a k-tupleof constants that speci�es the value of all variables in order. Each such possiblebinding is labelled � or 	 according to whether the tuple of values for the variablesin the clause head does or does not belong in the target relation.We illustrate the process using the member relation. The initial clause consists of justthe head member(A,B) :-in which each variable is unique. The labelled bindings corresponding to this initialpartial clause are just the � and 	 tuples of the target relation, namely
4

h1,[1]i� h2,[2]i� h3,[3]i� h1,[1,2]i� h2,[1,2]i�h2,[2,3]i� h3,[2,3]i� h1,[1,2,3]i� h2,[1,2,3]i� h3,[1,2,3]i�h1,[]i	 h1,[2]i	 h1,[3]i	 h1,[2,3]i	 h2,[]i	h2,[1]i	 h2,[3]i	 h3,[]i	 h3,[1]i	 h3,[2]i	h3,[1,2]i	If the literal components(B,A,C) is now added to the clause body to givemember(A,B) :- components(B,A,C)the new clause has three variables and is satis�ed by the bindingsh1,[1],[]i� h2,[2],[]i� h3,[3],[]i� h1,[1,2],[2]i� h2,[2,3],[3]i� h1,[1,2,3],[2,3]i�For instance, h1,[1],[]i is included because the values A=1, B=[1], C=[] satisfy theclause body, and is labelled � because the tuple h1,[1]i formed by the values of theclause head variablesA and B belongs inmember. Since all the bindings are labelled�,the clause covers no 	 tuples and so is complete. The � tuples covered by this clauseare removed, leaving only h2,[1,2]i, h3,[2,3]i, h2,[1,2,3]i and h3,[1,2,3]i to be covered bysubsequent clauses in the de�nition.The next iteration commences with the remaining � tuples and all 	 tuples, namelyh2,[1,2]i� h3,[2,3]i� h2,[1,2,3]i� h3,[1,2,3]i� h1,[]i	h1,[2]i	 h1,[3]i	 h1,[2,3]i	 h2,[]i	 h2,[1]i	h2,[3]i	 h3,[]i	 h3,[1]i	 h3,[2]i	 h3,[1,2]i	If the literal components(B,C,D) is added to the clause head to give the partial clausemember(A,B) :- components(B,C,D)with four variables, the bindings that satisfy this partial clause areh2,[1,2],1,[2]i� h3,[2,3],2,[3]i� h2,[1,2,3],1,[2,3]i� h3,[1,2,3],1,[2,3]i�h1,[2],2,[]i	 h1,[3],3,[]i	 h1,[2,3],2,[3]i	 h2,[1],1,[]i	h2,[3],3,[]i	 h3,[1],1,[]i	 h3,[2],2,[]i	 h3,[1,2],1,[2]i	Adding a further literal to give the new partial clausemember(A,B) :- components(B,C,D), member(A,D)restricts the bindings to just 5

h2,[1,2],1,[2]i� h3,[2,3],2,[3]i� h2,[1,2,3],1,[2,3]i� h3,[1,2,3],1,[2,3]i�For instance, the binding h1,[2],2,[]i is now excluded because the values A=1, B=[2],C=2, D=[] do not satisfy the requirement that A is a member of D. All bindings arelabelled�, again signalling completion of the clause. Each tuple in the target relationis now covered by the clausesmember(A,B) :- components(B,A,C).member(A,B) :- components(B,C,D), member(A,D).so the de�nition of member is complete. Using the Prolog notation for lists, theseclauses might be writtenmember(A,[AjC]).member(A,[CjD]) :- member(A,D).This example begs some important questions such as how to �nd appropriate literalsto add to the clause body. The next several subsections take up issues of this kindthat are central to foil's learning method.2.2 Selecting literalsLiterals that can appear in the body of a clause are restricted by the requirementthat programs be function-free, other than for constants appearing in equalities. Thepossible forms that foil considers are:� Q(V1; V2; :::; Vk) and not(Q(V1; V2; :::; Vk)), where Q is a relation and the Vi'sdenote existing variables bound earlier in the clause or new variables.� Vi=Vj or Vi 6=Vj, for existing variables Vi and Vj of the same type.� Vi=c and Vi 6=c, where Vi is an existing variable and c is a constant of theappropriate type. Only constants that have been designated as suitable toappear in a theory are considered { a reasonable theory for member mightreference the null list [] but should not involve an arbitrary list such as [1,2].� Vi � Vj, Vi > Vj, Vi � t, and Vi > t, where Vi and Vj are existing variables withnumeric values and t is a threshold chosen by foil.If the learned theory must be pure Prolog, negated literal forms not(Q(:::)) and Vi 6=...can be excluded by an option.Literals of the forms Q(:::) and not(Q(:::)) are further constrained. At least onevariable must have been bound earlier in the partial clause, either by the head ora literal in the body. As with golem, the depth of new variables is limited, where6

variables appearing in the head have depth 0 and a new variable in a literal has depthone greater than the maximum depth of its existing variables. Finally, if Q is thetarget relation, recursive body literals that could cause non-termination are excludedas discussed in Section 2.3.A literal in the body of a clause can serve two purposes. It may increase the proportionof � bindings, thereby moving the clause closer to completion when all bindings are�. Alternatively, a literal of the form Q(:::) may introduce new variables needed inthe �nal clause. Literals of the �rst kind, referred to as gainful, may also introducenew variables, but this is the primary motivation for the second class of determinateliterals.Gainful literals are evaluated using an information heuristic. Let the number of� and	 bindings of a partial clause be n� and n	 respectively. The average informationprovided by the discovery that one of the bindings has label � isI(n�; n) = � log2 n�= (n� + n) bits.If a literal L is added, some of these bindings may be excluded and each of the restwill give rise to one or more bindings for the new partial clause. Suppose that k ofthe n� bindings are not excluded by L, and that the numbers of bindings of the newpartial clause are m� and m	 respectively. The total information gained by addingL is then k � (I(n�; n) � I(m�;m)) bits.In the member example, there are 10 � and 11 	 bindings at the start of the �rstclause. Adding components(B,A,C) excludes all buth1,[1]i� h2,[2]i� h3,[3]i� h1,[1,2]i� h2,[2,3]i� h1,[1,2,3]i�each of which gives rise to a single binding for the new clause. The total informationgained by adding this literal is then 6� (I(10; 11)� I(6; 0)) or 6.42 bits.Determinate literals are inspired by golem's determinate terms but, whereas golemcan learn only theories in which all terms are determinate, foil implements theidea as a preference rather than a requirement. A determinate literal is one thatintroduces new variables such that the new partial clause has exactly one binding foreach � binding in the current clause, and at most one binding for each 	 binding.Determinate literals are useful because they introduce new variables, but neitherreduce the potential coverage of the clause nor expand the set of bindings. This isexempli�ed by the �rst literal components(B,C,D) of the second clause above; everybinding other than those of the form h..,[]i	 yields a single new binding in which newvariables C and D are the head and tail of B respectively. Notice that this literal isalso gainful as it increases the proportion of � bindings.All sensible literals derived from all relations are considered when adding literals toa clause. Some literals can be omitted, for instance7

� literals that do not satisfy the argument type constraints;� a literal Q(:::; X; :::; X; :::) with the same variable in argument positions i andj, when no tuple in the relation Q has the same constant in positions i and j;and� recursive literals that might cause in�nite recursion (see below).Further, evaluation of a literal can often be abandoned when it becomes clear that itis not determinate and cannot come close to the gain of the most gainful literal foundso far. On occasion a literal can be omitted altogether from consideration because itis a specialisation of a literal already known to exclude too many � bindings.2.3 Assuring recursive soundnessTheories found by foil are intended to be executable as Prolog programs, so it isimportant that recursive theories do not lead to in�nite recursion. To this end, foilincorporates a sophisticated scheme that bars recursive literals unless they can beproven to be problem-free, at least to the extent of ensuring termination on groundqueries to a single target relation1. The approach, described in detail in [Cameron-Jones and Quinlan, 1993a], has three phases:Ordering constants: The constants of each type T can be given to foil in theirnatural order, if one exists, or foil can �nd a plausible ordering. In the latter case,each pair of arguments Ai; Aj of type T in every relationR is examined to see whetherthe tuples of constants de�ning R are consistent with a partial order, here denotedAi � Aj (since it is impossible to distinguish between Ai < Aj and Ai > Aj). If thearguments exhibit such a partial order, each tuple in relation R will give ci � cj forthe constants ci; cj in the ith and jth positions respectively. The argument partialorder is ruled out only when the closure of these inequalities between constants impliesck � ck for some constant ck.Having found all potential partial orderings of pairs of arguments of type T acrossall relations, foil orders the constants of type T to be consistent with the maximumnumber of the argument partial orders. This process is carried out just once for eachtype for which an ordering is not speci�ed by the user.Ordering pairs of variables: The ordering of constants of type T may imply an or-dering of pairs of variables Vi; Vj of type T in a partial clause. Each binding of thepartial clause speci�es values ci; cj for Vi and Vj ; if it is always the case that ci � cj,then Vi � Vj.Ordering recursive literals: Recursive termination will be assured if, for all clauseswith head R(V1; V2; :::) and body literal R(W1;W2; :::), the body literal is less thanthe head. To order literals, foil considers schemes of the form1That is, with no mutually recursive de�nitions of two or more relations.8

R(W1;W2; :::) < R(V1; V2; :::) ifW� <� V�, orW� = V� and W� <� V�, orW� = V� and W� = V� and W
 <
 V
 , or ...for suitable argument positions �, �,
, ... and where <i denotes < if the real order ofconstants is known, otherwise a choice between � or �. Whenever a recursive literalis being considered, foil tries to construct a literal ordering scheme of this kind thatis satisfactory for both this literal and all other recursive literals in the de�nition sofar. If such a scheme does not exist, the recursive literal is ruled out.For the member example, foil �nds that the de�nition of the components(L,H,T)relation is consistent with T� L and orders the list constants[] � [1] � [2] � [3] � [1; 2] � [2; 3] � [1; 2; 3]:Now consider the partial clausemember(A,B) :- components(B,C,D)where, by the ordering above, D� B. When considering the addition of the recursiveliteral member(A,D), it is clear that an ordering schememember(W1;W2) < member(V1; V2) i� W2� V2will guarantee that the body literal is less than the head and so ensure that this literalcannot cause in�nite recursion.Many �rst-order learning systems employ simplermechanisms2 to prevent problematicrecursion, or no mechanisms at all! Even though this scheme is relatively complex,it is computationally e�cient in practice and is necessary for learning more di�cultrecursive de�nitions such as Ackermann's function (discussed in Section 3.2).2.4 Controlling searchfoil's exploration of the space of possible de�nitions is fundamentally greedy, butthe system incorporates mechanisms to curtail search down a particular path and torecover from poor choices of literals. Recovery is achieved by establishing checkpointswhen a gainful literal added to a clause is only marginally better than an alternativeliteral. A small, �xed number of checkpoints (default 20) is maintained and, if thecurrent partial clause cannot be completed so as to exclude all 	 tuples, search isrestarted from the best remaining checkpoint. This non-chronological backtrackingis invoked relatively infrequently since greedy search is usually su�cient to �nd aclause. Backtracking is not used to attempt to �nd a better clause, although thiscould become an option in future versions.2Early versions of foil used a weaker scheme that required one argument of the body literal tobe less than the corresponding argument of the head.9

Greedy search can fail either because there is no literal that could be added to aclause or, more commonly, because the addition of another literal will render theclause too complex with respect to the training data. The complexity criterion isbased on Rissanen's Minimum Description Length Principle [Quinlan and Rivest,1989] and requires that the cost of encoding a clause should never exceed the cost ofidentifying explicitly the tuples that it covers. Since determinate literals are addedindiscriminately, they are excluded from the calculation of the cost to encode a clause,de�ned as the number of bits needed to identify the relation and arguments of all non-determinate literals in the clause body. The cost of identifying the n tuples that itcovers among the � and 	 tuples of the target relation is the logarithm to base 2 ofthe number of ways in which n tuples could be selected. This criterion thus rules outelaborate clauses that cover few tuples.When exploring literals to add to the developing clause body, foil sometimes noticesa literal that would complete the clause but prefers another literal that is determinateor has higher gain. The best of the complete clauses encountered during search isretained in the wings and, if the �nal clause is not superior in terms of compactnessor coverage, the saved clause is substituted in its place.The �nal modi�cation to straightforward search occurs when a literal L chosen foraddition to the partial clause contains only variables that appear in the clause head.L could have appeared as the �rst literal of the clause body while intervening literalsintroducing new variables might have restricted the clause's coverage. In such situ-ations, all non-determinate literals that introduce variables are discarded and searchresumes from the shortened partial clause.2.5 Pruning de�nitionsA particular literal in a completed clause may be needed because it prevents theclause from covering 	 tuples, because it introduces a variable used in a later literal,or because it establishes a partial order on which recursion control depends. As aconsequence of its incremental construction, a clause may contain literals that servenone of these purposes. Removal of such literals has two bene�ts: the clause becomessimpler, and it may also cover more � tuples of the target relation.The policy of adding all determinate literals to the clause body is the principal sourceof unnecessary literals. Consequently, clause pruning proceeds in two stages. Alldeterminate literals that introduce variables not used by later literals are removed.This operation is fast but fallible, so the shortened clause is tested to see that it is stillvalid and recursively sound; if not, the original clause is restored. Then a literal-by-literal pruning process is carried out, starting from the last literal in the clause body.At each step a literal is removed, the residual clause tested, and the literal restoredonly if the pruned clause is unsatisfactory. This iterative pruning can be costly whenthe initial clause is long, but generalising the clause as much as possible can expeditelearning of the rest of the de�nition since fewer � tuples remain to be covered.10

De�nitions themselves can also be redundant since the � tuples covered by earlyclauses may also be covered by later clauses. When the de�nition is complete, eachclause is examined to see whether it uniquely covers one or more � tuples; if not, theclause is discarded.2.6 Dealing with closed worldsWe now come to the �rst of the more recent developments in foil. Unlike aspectsdescribed above, these are not documented elsewhere and so are presented in moredetail.foil requires that the target and background relations be de�ned extensionally astuples of constants. This cannot be done when the relation is inherently in�nite,so the usual practice is to specify a �nite closed world and to limit tuples to thosecontaining only constants that appear in the closed world. This implicitly assumesthat a satisfactory de�nition for the closed world will be correct in general, evenwhen used in conjunction with intensionally-de�ned background knowledge. Bell andWeber [1993] call this the open domain assumption.Consider the task of learning the concept of a simple list as one that contains at mostone element. We might establish a closed world consisting of all lists with up to threeelements drawn from f1,2,3g in which simple(L) is de�ned by the tuples fh[]i, h[1]i,h[2]i, h[3]ig. Background relations are components(L,H,T) as before, and conc(A,B,C)meaning that the result of concatenating lists A and B is list C. Notice that conc doesnot contain tuples representing the result of concatenating two two-element or twothree-element lists, since these would form lists that lie outside the closed world.For this task, foil immediately �nds the surprising de�nitionsimple(A) :- conc(A,A,B).The de�nition is correct for the closed world since, when A has two or more elements,the result of concatenating A with itself lies outside the closed world and the corre-sponding tuple does not appear in conc. Unfortunately, though, this de�nition is notcorrect in general.Enlarging the closed world merely postpones the problem. In a new closed worldincluding all lists up to length four, for example, foil �nds a similar de�nitionsimple(A) :- conc(A,A,B), conc(B,B,C).This is still correct for the larger closed world { if A has two or more elements thenB has four or more and so the result of concatenating B to itself again is not de�nedin the closed world. 11

This problem is not restricted to foil but is a consequence of using extensionallyde�ned relations. For instance, golem [Muggleton and Feng, 1992] also requiresrelations to be de�ned by ground assertions and �nds identical de�nitions for thesetasks.The solution we have implemented in foil involves a special constant ^ denotingout-of-world. In the three-element world, the de�nition of conc would include thetuple h[1,2,3],[1,2,3],^i to indicate that the result of concatenating [1,2,3] to itself isnot de�ned in the closed world. This constant ^ has special signi�cance for foil: aliteral is barred if adding it to the clause body would cause ^ to appear in any of thebindings. The rationale for this is that all de�nitions are forced to stay within theclosed world and cannot exploit boundary e�ects attributable to its �nite size.Returning to the example, we see that 	 tuples for simple include h[1,2,3]i. The literalconc(A,A,B) is therefore excluded since it would generate a binding h[1,2,3],^i. Thede�nition now found by foil is more complex:simple([]).simple(A) :- components(A,B,[]).or, in Prolog notation,simple([]).simple([B]).This de�nition satis�es the open domain assumption since it is correct in general, notjust for the particular closed world in which it was learned.2.7 Making clauses more understandableAn important goal of all symbolic learning is to �nd theories that make sense topeople. To this end, foil contains mechanisms intended to re-express clauses inmore intuitive form. Some transformations are relatively easy, such as removingliterals Vi=Vj and Vj=c from the body by substituting Vi or c respectively for eachoccurrence of Vj. For instance, the �rst clause of the de�nition above initially has theform simple(A) :- A=[].The body literal was removed and [] substituted for A in the head.Such simple transformations are not su�cient to render some clauses intelligible,even after pruning. An example of this arises while foil is learning a de�nition ofsort(A,B) given just the background relations components(L,H,T) and less-than(A,B).After learning the base case (sorting the null list gives itself), foil embarks on asecond clause. The literals added to the clause body are12

components(A,C,D), components(B,E,F) (both determinate)sort(D,G) (determinate)3components(H,C,G) (determinate)B=H (gainful)D=[] (gainful).After pruning and substitution, the clause becomessort(A,B) :- components(A,C,[]), sort([],G), components(B,C,G).which is equivalent tosort([C],[CjG]) :- sort([],G).This clause is correct { it forces A and B to be identical single-element lists { butit is certainly not intuitive! The fundamental problem is that literals in the clausebody establish implicit equalities that must be made explicit if the clause is to beintelligible. For example, sort([],G) forces G to be the null list in all bindings, butthe literal G=[] does not appear in the clause. We have found that addition of suchimplicit literals to the clause before pruning often leads to a simpler clause.When a clause is completed, its variable bindings are examined for equalities of theform Vi=Vj or Vj=c that do not appear explicitly in the clause body. Any suchequalities are inserted into the clause immediately after the �rst literal that binds Vj.Explicit equalities are also promoted within the clause, the goal being to retain themin the pruned clause as long as possible. The clause is then pruned from the end inthe usual way.In the case of this clause, the implicit equalities established by the literals are A=B,A=H, C=E, F=[] and G=[]. When these are inserted and the literal D=[] promoted,the clause body becomesA=B,components(A,C,D),D=[],components(B,E,F),C=E,F=[],sort(D,G),G=[]components(H,C,G),A=H,B=H.3It might seem that there should be a corresponding determinate literal sort(F,H). However, F isthe tail of a sorted list and is therefore sorted already; thus H=F and this literal introduces no newvariables. 13

All but the �rst three literals are now pruned and, after substitution, this base caseclause becomes much more recognisable assort(A,A) :- components(A,C,[]).or sort([C],[C]).3. ApplicationsThis section examines a representative sample of tasks to which foil has been applied.Our intention is to demonstrate that the system's approach is e�ective across a rangeof domains encompassing most areas of �rst-order learning.The original foil paper [Quinlan, 1990] presents results on six families of tasks ad-dressed by other learning systems, including classics such as the de�nition of an arch[Winston, 1975], classifying trains [Michalski, 1980], discovering rules for the cardgame Eleusis [Dietterich, 1980], and deciding when chess positions are illegal [Mug-gleton et al, 1989]. Several experiments involving larger datasets or more di�cultde�nitions have subsequently been completed; two are reported here for the �rsttime.3.1 Recursive list-processing functionsPerhaps our most comprehensive study comes from the domain of learning simple list-processing functions, reported in [Quinlan and Cameron-Jones, 1993]. All the 18 suchtasks presented in Chapter 3 of Bratko's [1990] well-known Prolog text are tackledby foil. Two closed worlds are de�ned, containing respectively all lists of lengthup to three using elements f1,2,3g and all lists of length up to four using elementsf1,2,3,4g. For each function, the target relation is speci�ed exhaustively over theparticular closed world so that there is no question of the system's performance beingin
uenced by the choice of examples. The background relations include componentsand all functions that appear in the previous tasks, most of which are irrelevant tothe task at hand.In almost all cases foil is able to �nd a satisfactory de�nition, although some de�-nitions are correct only in the closed world.4 In one case, foil �nds a more concisede�nition than that given in the book! The relation dividelist(A,B,C) is intended to putalternate elements from A into lists B and C. Bratko gives a three-clause de�nition,whereas foil's has just two clauses:4Later versions of foil, especially since the introduction of the out-of-world constant ^, overcomemost of the remaining problems on these tasks. 14

dividelist([],[],[]).dividelist(A,B,C) :- components(A,D,E), components(B,D,F),dividelist(E,C,F).where the second clause might be writtendividelist([DjE],[DjF],C) :- dividelist(E,C,F).Other list-processing functions have been investigated, notably learning the quicksortprocedure [Quinlan, 1991].3.2 Arithmetic functionsFunctions such as n-choose-m can also be learned from small closed worlds. The mostcomplex studied to date is Ackermann's function, de�ned asF (m;n) = 8><>: n+ 1 if m = 0F (m� 1; 1) if n = 0F (m� 1; F (m;n� 1)) otherwiseIn function-free form, the corresponding predicate Ackermann(A,B,C)means F (A;B) =C. From a closed world containing integers 0 to 20 and a background relationsucc(A,B) meaning B = A+1, foil takes 16.7 seconds on a DECstation 3000/800 to�nd the de�nitionAckermann(0,B,C) :- succ(B,C).Ackermann(A,0,C) :- succ(D,A), Ackermann(D,1,C).Ackermann(A,B,C) :- succ(D,A), succ(E,B), Ackermann(A,E,F),Ackermann(D,F,C).This program is interesting because it contains two recursive clauses, one being doublyrecursive. Learning this last clause requires subtle control of recursion since the literalAckermann(A,E,F) decreases the second argument while Ackermann(D,F,C) increasesthe second argument but decreases the �rst. foil is the only system we know of thatis capable of learning this de�nition.3.3 Attribute-value dataSince the theory language available to foil encompasses all symbolic zeroth-ordertheories, it is relevant to enquire how the performance of foil compares to thatof zeroth-order systems on attribute-value tasks. A group of two-class classi�cationtasks was investigated, using no background relations and target relations of theform Class1(V1,V2,...) and Class2(V1,V2,...) with one argument for each attribute.Experiments were carried out, �rst restricting foil to literals of the forms Vi=c,Vi>t and Vi�t (giving exactly the same theory language available to most zeroth-order learning systems), then allowing an extended language including literals suchas Vi=Vj and Vi>Vj that compare the values of pairs of attributes.15

Results of these experiments appear in [Cameron-Jones and Quinlan, 1993b]. Ourgeneral conclusion is that foil performs slightly better than C4.5 [Quinlan, 1993] onthese datasets, especially when permitted to use the extended theory language, butthat learning generally requires more computation. The theories found by foil areoften less simple than those found by C4.5, indicating that the mechanism to limitclause complexity described in Section 2.4 does not adequately prevent over�tting ofthe training data. This �nding is supported by other researchers such as F�urnkranz[1993].3.4 Protein secondary structureMore evidence for over�tting comes from another task of learning to predict proteinsecondary structure [Muggleton, King and Sternberg, 1992]. Proteins consist of longchains of amino acid residues and at certain positions they form structures such as �-helices and �-sheets. The target relation here is alpha(Protein,Position) that indicateswhen an �-helix occurs at the speci�ed position in a particular protein. Twenty-�vebackground relations identify the residue at each position and provide chemical andphysical properties of the residues. The training set consists of 1612 tuples takenfrom twelve proteins with a further 416 tuples from four di�erent proteins used as atest set.golem, augmented with a hand-crafted criterion to avoid over�tting in this domain,is able to �nd 21 clauses that exhibit a predictive accuracy of 72% on the test set.foil performs relatively poorly, �nding 84 clauses that have an accuracy of 65% onthe test tuples, 7% lower than the corresponding �gure for golem.[golem's performance on this task is further improved by a form of bootstrapping.The �rst (level 0) theory learned above predicts occurrences of �-helices additional tothose recorded in the training data. When these are added as new � tuples, golemlearns a revised (level 1) theory from the modi�ed data. Repeating the process givesa level 2 theory whose accuracy on the test data jumps to 81%.]3.5 Identifying document componentsWe come now to the �rst new application reported in this paper { learning rules tolocate the logical components of a document such as that shown in Figure 2. Di�erentdocuments have varying numbers of components and relationships (such as alignment)between pairs of components, so this is a good example of a task that is ill-suited tozeroth order learning methods based on �xed-length attribute-value vectors.Five target relations identify document components relevant to sender, receiver, date,reference and logo. Plentiful background information is provided by 57 relations thatdescribe 244 components of 20 single-page documents, giving each component's size,type (e.g. text, picture), position on the page, and alignment with other components.The document x1 of Figure 2 with ten components x2...x11 is described by 102 tuples16

x2(sender)x3(receiver)x4x5(logo) x6(date)x7(reference)x8 x9 x10x11Figure 2: Sample document showing components (following Semeraro et al [1993]).in the background relations.Results of a leave-one-out cross-validation appear in Table 1. In each run, informationabout components of one document is omitted from the training data and used totest the theory learned from the components of the remaining documents, the sameprocedure being repeated for each target relation and each document. Test errorsare broken down into false positives (tuples incorrectly predicted to belong to thetarget relation) and false negatives (� tuples not covered by the learned theory).Accuracy on unseen test data is excellent, ranging from 100% for sender and logo to96.3% for date.Table 1: Results on unseen data, document identi�cation tasks.Target False False Total ErrorRelation Pos Neg Errors Ratesender 0 0 0 {receiver 3 5 8 3.3%date 5 4 9 3.7%reference 2 2 4 1.6%logo 0 0 0 {
17

Table 2: Results on chess endgamefoil gcwsMoves Positions Clauses Uncovered Total Clauseszero 27 3 0 3 6one 78 5 8 13 12two 246 15 0 15 20three 81 15 2 17 44four 198 21 20 41 89�ve 471 50 5 55 185six 592 61 21 82 {seven 683 90 24 114 {eight 1433 93 87 180 {nine 1712 128 91 219 {ten 1985 153 95 248 {eleven 2854 180 165 345 {twelve 3597 148 352 500 {thirteen 4194 224 102 326 {fourteen 4553 200 31 231 {�fteen 2166 68 0 68 {sixteen 390 3 0 3 {(drawn) 27963.6 Moves to win in a chess endgameThe �nal application concerns the simplest chess endgame, King and Rook versusKing. Bain [1994] studies the task of learning to predict the minimum number ofmoves required for a win by the Rook's side (with values 0 through 16) or, failingthis, a draw { there are no positions in which the Rook's side loses.Bain formulates this problem as a cascade of learning tasks. From a database ofall legal positions after the removal of symmetric variants, a theory is learned thatdescribes positions won in zero moves. These positions are then eliminated from thedata and the next task, discriminatingpositionswon in one move from drawn positionsand those won in two or more moves, is presented to the learning system. The processcontinues in a similar fashion with the �nal theory discriminating positions won in16 moves from drawn positions. Bain uses a system called gcws, based on golem,that allows exception predicates to be invented and used in clauses; with it, he �ndscorrect de�nitions for the �rst six levels of this task.Table 2 summarises results obtained when the experiment was repeated using foilrather than gcws. For each number of moves to win, the Table shows the number of� tuples that must be covered by the learned theory. The de�nitions found by foiloften fail to cover all � tuples so, following the practice used by golem, uncovered �tuples are added as ground clauses; the number of clauses in the �nal theory appears18

in the column labelled Total. For comparison, the �nal column shows the size of thetheories constructed by gcws.foil handles this domain comparatively well. Correct de�nitions are found for eachnumber of moves, with one exception { the de�nition of positions lost in eleven moveshas one false positive error. foil's de�nitions generally compress the data more thanthose found by gcws, with some exact clauses being remarkably simple. Even betterresults are obtained if drawn positions are identi�ed �rst, then positions lost in onemove and so on, leaving the �nal theory to distinguish between positions lost in �fteenand sixteen moves.4. Related SystemsElements of foil's approach have been used in other systems, often with considerablemodi�cation and innovative extension. These developments are typically aimed atbroadening the learning task itself (such as by taking account of additional domainknowledge), correcting some perceived de�ciency in foil (such as its tendency toover�t), or specialising it for a particular family of tasks (such as learning controlheuristics).focl [Pazzani, Brunk and Silverstein, 1991; Pazzani and Kibler, 1992] is an earlyextension of foil that takes advantage of domain knowledge in the form of a partialtheory, intensionally-speci�ed background relations, and relational clich�es. The priortheory may contain clauses that are too general in that they cover 	 tuples, and toospeci�c in failing to cover � tuples of the target relation. To investigate this, theprior theory is elaborated by unfolding its proof tree, guided by the same informationmetric that foil uses to select literals to be added to clauses, and complete pathsin the tree that remain too general are specialised by invoking foil's literal-addingprocedure. Background relations de�ned as clauses rather than as sets of tuples areevaluated intensionally and, when a clause of a background de�nition has high gain, anappropriate specialisation of the clause body is added to the current partial clause.Similarly, relational clich�es consist of schemas containing sequences of literals thattend to belong together in de�nitions; foilmaymiss such combinations unless at leastone of the individual literals is determinate or has high gain. focl thus represents aclean union of ideas from explanation-based learning and empirical induction.Another system from UCI, Audrey II [Wogulis and Pazzani, 1993], uses similarmechanisms to specialise over-general theories and to add new clauses, both within atheory-revision context. Rather than being limited to adding literals, however, thissystem uses four revision operators that include replacing some literals in an existingclause.Several other researchers have modi�ed foil to make it more robust, especially withrespect to noisy data. mfoil [Lavra�c and D�zeroski, 1994] replaces foil's greedy19

search with beam search, thereby increasing the chances of �nding a good clause;chooses literals to add to the clause body on the basis of the estimated accuracy ofthe new clause, rather than on information gain; and uses a statistical signi�cancetest instead of the MDL criterion to decided when a clause should not be allowed togrow further. fossil [F�urnkranz, 1993] employs a single correlation criterion bothfor selecting the next literal to add and for stopping the growth of a clause. Thesesystems perform much better than foil on a chess-derived relation illegal [Muggletonet al, 1989] corrupted by moderate levels of noise, learning more compact de�nitionswith higher predictive accuracy.hydra [Ali and Pazzani, 1993] deals with noise by extending foil in three dimensions.The learning task is widened to allow for any number of classes rather than just thede�nition of a (binary) target relation. hydra then constructs a de�nition for eachclass; in our context, this involves learning separate de�nitions for the target relationR and for not(R). Since the language of clauses is not closed under negation, onede�nition might be considerably simpler and more robust than the other. Secondly,the reliabilities of individual clauses in all theories are estimated from likelihood ratiosderived from their respective coverages of � and 	 tuples. A query is evaluatedagainst all theories, e.g. against both the theory for R and the theory for not(R).The outcome is determined by the most reliable clause from any theory that succeedson the query. Finally, hydra uses likelihood improvement rather than informationgain to select the next literal to be added to the clause body. Ablation experimentssuggest that all three changes help to produce more robust learning.A most promising area for relational learning is the formulation of control heuristics.Dolphin [Zelle and Mooney, 1993] blends ideas from explanation-based learning andinduction with the goal of making logic programs run faster. The central idea is to in-sert a guard literal useful-R-k(query) as the �rst body literal in each nondeterministicclause k of relation R, preventing the clause from being evaluated unless it is judgedlikely to succeed. The � and 	 tuples of this relation are provided by examples ofwhen the particular clause succeeds and fails that are extracted from an executiontrace of the original program; from these, a learning program �nds a de�nition ofthe guard literal. Although the learning program is based on foil, it embodies aninnovative method of specialising incomplete clauses. The proof of the original queryis generalised by replacing constants with unique variables and from it Dolphin con-structs a set of specialisation pairs hG;Li, where G is a solved subgoal and L is eithertrue or an operational literal from the proof that shares one or more variables with G.Each such pair provides a candidate specialisation of a partial clause H :- B obtainedby unifying head H with G (with most general uni�er �), and altering the clause to�(H :- B;L). This allows the head of a clause, as well as its body, to be specialisedand considers only new body literals that are known to be relevant to part of theproof. foil's information gain criterion is then used to select a specialisation fromthe candidates above. In one impressive example, Dolphin is able to transform anaive permute-and-check sorting algorithm of complexity O(n!) to an O(n2) insertionsort. 20

The same authors have developed another similarly-motivated system Chillin [Zelle,Mooney and Konvisser, 1994; Zelle and Mooney, 1994] that has learned search controlrules for a nondeterministic English parser. The initial theory consists of groundclauses obtained directly from the � tuples of the target relation. Successive stepscompress this de�nition by introducing more general clauses and removing subsumedclauses. A more general clause is found by selecting two existing clauses, formingthe head of a new clause as the least general generalisation of their heads in themanner of golem, then specialising the clause by adding literals to the clause body.This last stage is similar to foil, except that the metric used to select literals isbased on notions of compression rather than information gain. Chillin also includesa mechanism derived from champ [Kijsirikul, Numao and Shimura, 1992] that canassess the bene�t of introducing a new relation and learning its de�nition.Grasshopper [Leckie and Zukerman, 1993] is another interesting system that learnsto control search in planning domains. Examples of search decisions, both good andbad, are extracted from the planner's execution trace and grouped according to theplanning goal that they address and the action chosen. A learning algorithm based onfoil generalises the examples of each group to produce search control heuristics. Ina �nal step, the utility of the learned rules is assessed by comparing their evaluationcost against their bene�t in reduced search cost, leading to an optimised subset thatminimises overall planning time.The overview of foil presented in Section 2.1 talks only of learning a de�nition for asingle target relation. The implementation, however, allows for any number of targetrelations; foil simply tackles them one after another. De Raedt, Lavra�c and D�zeroski[1993] point out that there are situations in which mutually recursive target relationscan lead to non-terminating programs { recall the caveats to recursive soundness inSection 2.3. To overcome this problem, their system mpl develops all de�nitions oftarget relations in parallel, checking for global as well as local consistency and usingheuristics for specialising partial clauses that are similar to mfoil's.A quite di�erent kind of extension is embodied in Grendel and Grendel2 [Cohen,1994a,b]. Relations with high arity can pose severe computational problems for foilsince, if there are v variables in a partial clause, a relation of arity r can give riseto O((v + r)r) potential next literals. Even when many or most of these are ruledout by type constraints and the like, the remaining candidates might still be toonumerous to contemplate. Further, high-arity relations may require an impossiblylarge set of 	 tuples if over-generalised clauses are to be avoided. Grendel2 attacksthis problem within a foil-like framework by specifying a hypothesis language thatrestricts the form of de�nitions to those that make sense in the domain. This notonly prevents consideration of useless literals and literal combinations, but can alsoserve in place of 	 tuples to prevent over-generalisation; the goal is then to �nd ade�nition in the hypothesis language that covers the � tuples of the target relation.Cohen [1994a] discusses an application to reverse engineering in which the goal is toreconstruct the speci�cation of a database interface consisting of over a million linesof C. Grendel2 is able to recover an accurate description of one-third of the system,21

despite the presence of relations with high arity and clause-level domain constraintsthat defeat foil.5. Areas for Further ResearchSystems such as the above extend the basic general-to-speci�c paradigm for inducing�rst-order theories. The issues that they address are important for the developmentof more powerful and
exible learning methods, and many more issues remain to betackled in this vigorous research area. In this Section we raise a couple of fundamentalproblems that limit foil and that, we suspect, apply in some degree to most �rst-order systems.5.1 Irrelevant informationAny learning problem can be made harder by adding unhelpful information. The e�ectis to increase the space of possible theories that could be learned, thereby enlarging thehaystack in which we are searching for a �gurative needle. In zeroth-order systems,where this problem is synonymous with the presence of irrelevant attributes, e�ectivemethods for weeding out the non-useful features have been developed [e.g. John,Kohavi and P
eger, 1994; Moore and Lee, 1994]; in a sense, the problem is undercontrol. In �rst-order learning, on the other hand, irrelevant information in the formof unnecessary relations and/or useless �elds of relations can have a dramatic impacton learning time.An example comes from the list-processing tasks discussed in Section 3.1 using thesmaller closed world of three-element lists. The �rst task is to learn a de�nition ofmember and foil requires only 0.03 seconds to �nd the de�nition of Section 2.1. Ifthe second relation conc(A,B,C) is included as an additional background relation, thetime required to learn the same de�nition jumps to 1.36 seconds, or more than 40times as long. Similarly, adding this excess relation increases golem's learning timeby a factor of 60, although it now learns a di�erent de�nitionmember(A,[BjC]) :- conc(D,[AjE],[BjC]).The impact of extra relations is somewhat unpredictable. Although learning a def-inition of dividelist, the last task in the original series, does not make use of any ofthe 14 relations de�ned by preceding tasks, deleting them produces a comparativelysmall reduction in foil's learning time from 42 seconds to 16 seconds.Practical learning systems will need to be able to deal with large volumes of infor-mation, selecting only that part relevant to the task at hand. We regard this as themost pressing unsolved problem in �rst-order learning.22

5.2 Incomplete informationWhen learning recursive de�nitions, most �rst-order systems require that the set of� tuples for the target relation be largely complete. The few exceptions constrainthe form that de�nitions can take, or depend on information additional to the tuplesthemselves. force2 [Cohen, 1993] limits de�nitions to two clauses, one base case andone linearly recursive clause, and requires that instances of the base clause be iden-ti�ed. crustacean [Aha, Lapointe, Ling and Matwin, 1994] searches for de�nitionsconsisting of a unit base clause and a single recursive clause containing one literalin its body. Both systems can then learn accurate de�nitions from sparse, randomsamples of tuples from the target relation. Although restricted theory languages suchas these are adequate for a surprisingly large class of relations, there does not seemto be an easy way to extend approaches of this kind towards more complex recursivede�nitions.From foil's perspective, the problem is that the utility of a clauseR(V1; V2; :::) :-, R(W1;W2; :::),may not become apparent unless there are numerous ground instances of the clause inwhich the ground instances of hV1; V2; :::i and hW1;W2; :::i both belong to R; withoutthis, the recursive literal R(W1;W2; :::) has low gain. Even when there are relativelyfew missing � tuples, foil may propose additional clauses to cover what seem to bespecial cases.Learning a de�nition of member again illustrates this. When 10 of the 75 � tuples ofmember are deleted at random, foil �nds the de�nitionmember(A,B) :- components(B,A,C).member(A,B) :- components(B,C,D), components(D,A,E).member(A,B) :- components(B,C,D), member(A,D).or member(A,[AjC]).member(A,[C,AjE]).member(A,[CjD]) :- member(A,D).Notice that the second clause has been added to cover \exceptions" to the generalrule given by the �rst and third clause. From the same data, golem learns a similarlyverbose de�nitionmember(A,[AjB]).member(A,[B,AjC]).member(A,[B,CjD]) :- member(A,[BjD]).It might seem as though this problem can be solved simply by evaluating clauses in-23

tensionally when removing the � tuples that they cover. However, foil often learnsa recursive clause before �nding a base case, the latter being essential for any inten-sional coverage at all. A better approach might use the same kind of bootstrappingemployed by Muggleton et al with the protein data (Section 3.4). At each iteration,covered tuples that do not appear explicitly in either the � or 	 tuples would beadded to the former. In this way it may be possible to assemble a more completeextensional speci�cation of the target relation, leading to a more accurate de�nition.6. ConclusionAfter some �ve years of development, foil has reached a kind of adolescence: it ex-hibits some interesting behaviours but has not yet matured su�ciently to withstandthe crucible of large real-world applications. Several extensions of its basic approachshow great promise, especially in areas like learning control heuristics. We are con-�dent that further research on general-to-speci�c induction over the next few yearswill lead to powerful tools for learning in �rst-order domains.The current version of foil (written in C) is available by anonymous ftp fromftp.cs.su.oz.au, directory pub, �le foil6.sh.AcknowledgementsThis research was made possible by a grant from the Australian Research Counciland assisted by research agreements with Digital Equipment Corporation. We thankStephen Muggleton, Giovanni Semeraro and Michael Bain for providing the protein,document and KRK datasets respectively. We are grateful to William Cohen andStephen Muggleton for most helpful comments on a draft of this paper.References1. Aha, D.W., Lapointe, S., Ling, C.X., and Matwin, S. (1994). Learningrecursive relations with randomly-selected small training sets. ProceedingsEleventh International Conference on Machine Learning, New Brunswick, NewJersey, 12-18. San Francisco: Morgan Kaufmann.2. Ali, K., and Pazzani, M.J. (1993). hydra: a noise-tolerant relational conceptlearning algorithm. Proceedings Thirteenth International Joint Conference onArti�cial Intelligence, Chambery, France, 1064-1070. San Francisco: MorganKaufmann.3. Bain, M.E. (1994). Learning logical exceptions in chess. PhD thesis,Department of Statistics and Modelling Science, University of Strathclyde,Scotland. 24

4. Bell, S., and Weber, S. (1993). On the close logical relationship between foiland the frameworks of Helft and Plotkin. Proceedings Third InternationalWorkshop on Inductive Logic Programming, Bled, Slovenia, 127-147.5. Bratko, I. (1990). Prolog Programming for Arti�cial Intelligence (2nd edition).Wokingham, UK: Addison-Wesley.6. Cameron-Jones, R.M., and Quinlan, J.R. (1993a). Avoiding pitfalls whenlearning recursive theories. Proceedings Thirteenth International JointConference on Arti�cial Intelligence, Chambery, France, 1050-1057. SanFrancisco: Morgan Kaufmann.7. Cameron-Jones, R.M., and Quinlan, J.R. (1993b). First order learning, zerothorder data. Proceedings AI'93 Australian Joint Conference on Arti�cialIntelligence, Melbourne, 316-321. Singapore: World Scienti�c.8. Cameron-Jones, R.M., and Quinlan, J.R. (1994). E�cient top-down inductionof logic programs. SIGART, 5, 33-42.9. Cohen, W.W. (1993). Pac-learning a restricted class of recursive logicprograms. Proceedings Third International Workshop on Inductive LogicProgramming, Bled, Slovenia, 73-86.10. Cohen, W.W. (1994a). Recovering software speci�cations with inductive logicprogramming. Proceedings AAAI-94 Twelfth National Conference on Arti�cialIntelligence, Seattle, Washington, 142-148. Menlo Park: AAAI Press.11. Cohen, W.W. (1994b). Grammatically biased learning: learning logicprograms using an explicit antecedent description language. Arti�cialIntelligence, 68, 303-366.12. De Raedt, L., Lavra�c, N., and D�zeroski, S. (1993). Multiple predicatelearning. Proceedings Thirteenth International Joint Conference on Arti�cialIntelligence, Chambery, France, 1037-1042. San Francisco: Morgan Kaufmann.13. DeJong, G., and Mooney, R. (1986). Explanation-based learning: analternative view. Machine Learning, 1, 145-176.14. Dietterich, T.G. (1980). The methodology of knowledge layers for inducingdescriptions of sequentially ordered events. Technical Report R-80-1024,Department of Computer Science, University of Illinois at Urbana-Champaign,USA.15. F�urnkranz, J. (1993). fossil: a robust relational learner. Technical ReportTR-93-28, Austrian Research Institute for Arti�cial Intelligence, Vienna.16. Gold, E.M. (1967). Language identi�cation in the limit. Information andControl, 10, 447-474. 25

17. John, G.S., Kohavi, R., and P
eger, K. (1994). Irrelevant features and thesubset selection problem. Proceedings Eleventh International Conference onMachine Learning, New Brunswick, New Jersey, 121-129. San Francisco:Morgan Kaufmann.18. Kijsirikul, B., Numao, M., and Shimura, M. (1992). Discrimination-basedconstructive induction of logic programs. Proceedings AAAI-92 TenthNational Conference on Arti�cial Intelligence, San Jose, CA, 44-49. MenloPark: AAAI Press.19. Lavra�c, N., and D�zeroski, S. (1994). Inductive Logic Programming: Techniquesand Applications. London: Ellis Horwood.20. Leckie, C., and Zukerman, I. (1993). An inductive approach to learning searchcontrol rules for planning. Proceedings Thirteenth International JointConference on Arti�cial Intelligence, Chambery, France, 1100-1105. SanFrancisco: Morgan Kaufmann.21. Michalski, R.S. (1980). Pattern recognition as rule-guided inductive inference.IEEE Transactions on Pattern Analysis and Machine Intelligence, 2, 349-361.22. Mitchell, T.M., Keller, R.M., and Kedar-Cabelli, S.T. (1986).Explanation-based generalization: a unifying view. Machine Learning, 1,47-80.23. Moore, A.W., and Lee, M.S. (1994). E�cient algorithms for minimizingcross-validation error. Proceedings Eleventh International Conference onMachine Learning, New Brunswick, New Jersey, 190-198. San Francisco:Morgan Kaufmann.24. Muggleton, S., and Buntine, W. (1988). Machine invention of �rst-orderpredicates by inverting resolution. Proceedings Fifth International ConferenceMachine Learning, Ann Arbor, Michigan, 339-352. San Mateo: MorganKaufmann.25. Muggleton, S., Bain, M., Hayes-Michie, J., and Michie, D. (1989). Anexperimental comparison of human and machine learning formalisms.Proceedings of the Sixth International Machine Learning Workshop Ithaca,NY. San Mateo: Morgan Kaufmann, 113-118.26. Muggleton, S., and Feng, C. (1992). E�cient induction of logic programs. InS. Muggleton (Ed.), Inductive Logic Programming, 281-298. London:Academic Press.27. Muggleton, S, King, R.D., and Sternberg, M.J. (1992). Protein secondarystructure prediction using logic-based machine learning. Protein Engineering,5, 646-657. 26

28. Pazzani, M.J., Brunk, C.A., and Silverstein, G. (1991). A knowledge-intensiveapproach to learning relational concepts. Proceedings Eighth InternationalWorkshop on Machine Learning, Evanston, Illinois, 432-436. San Mateo:Morgan Kaufmann.29. Pazzani, M.J., and Kibler, D. (1992). The utility of knowledge in inductivelearning. Machine Learning, 9, 1, 57-94.30. Quinlan, J.R., and Rivest, R.L. (1989). Inferring decision trees using theMinimum Description Length Principle. Information and Computation, 80,227-248.31. Quinlan, J.R. (1990). Learning logical de�nitions from relations. MachineLearning, 5, 239-266.32. Quinlan, J.R. (1991). Determinate literals in inductive logic programming.Proceedings Twelfth International Joint Conference on Arti�cial Intelligence,Sydney, Australia, 746-750. San Mateo: Morgan Kaufmann.33. Quinlan, J.R. (1993). C4.5: Programs for Machine Learning. San Mateo:Morgan Kaufmann.34. Quinlan, J.R., and Cameron-Jones, R.M. (1993). FOIL: a midterm report.Proceedings European Conference on Machine Learning, Vienna, 3-20. Berlin:Springer-Verlag.35. Sammut, C.A., and Banerji, R.B. (1986). Learning concepts by askingquestions. In R.S. Michalski, J.G. Carbonell and T.M. Mitchell (Eds.),Machine Learning: An Arti�cial Intelligence Approach (Vol 2). Los Altos:Morgan Kaufmann.36. Sammut, C.A. (1993). The origins of inductive logic programming: aprehistoric tale. Proceedings Third International Workshop on Inductive LogicProgramming, Bled, Slovenia, 127-147.37. Semeraro, G., Brunk, C.A., and Pazzani, M.J. (1993). Traps and pitfalls whenlearning logical theories: a case study with foil and focl. Technical Report93-33, Department of Information and Computer Science, University ofCalifornia, Irvine, USA.38. Shapiro, E.Y. (1983). Algorithmic Program Debugging. Cambridge, MA: MITPress.39. Winston, P.H. (1975). Learning structural descriptions from examples. In P.H.Winston (Ed), The Psychology of Computer Vision. New York: McGraw-Hill.40. Wogulis, J., and Pazzani, M.J. (1993). A methodology for evaluating theoryrevision systems: results with Audrey II. Proceedings Thirteenth InternationalJoint Conference on Arti�cial Intelligence, Chambery, France, 1128-1134. SanFrancisco: Morgan Kaufmann. 27

41. Zelle, J.M., and Mooney, R.J. (1993). Combining foil and EBG to speed-uplogic programs. Proceedings Thirteenth International Joint Conference onArti�cial Intelligence, Chambery, France, 1106-1111. San Francisco: MorganKaufmann.42. Zelle, J.M., and Mooney, R.J. (1994). Inducing deterministic Prolog parsersfrom Treebanks: a machine learning approach. Proceedings AAAI-94 TwelfthNational Conference on Arti�cial Intelligence, Seattle, Washington. MenloPark: AAAI Press.43. Zelle, J.M., Mooney, R.J., and Konvisser, J.B. (1994). Combining top-downand bottom-up techniques in inductive logic programming. ProceedingsEleventh International Conference on Machine Learning, New Brunswick, NewJersey, 343-351. San Francisco: Morgan Kaufmann.

28

