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Abstract. We present a new approach to learning hypertext classifiers
that combines a statistical text-learning method with a relational rule
learner. This approach is well suited to learning in hypertext domains
because its statistical component allows it to characterize text in terms
of word frequencies, whereas its relational component is able to describe
how neighboring documents are related to each other by hyperlinks that
connect them. We evaluate our approach by applying it to tasks that in-
volve learning definitions for (i) classes of pages, (ii) particular relations
that exist between pairs of pages, and (iii) locating a particular class of
information in the internal structure of pages. Our experiments demon-
strate that this new approach is able to learn more accurate classifiers
than either of its constituent methods alone.

1 Introduction

In recent years there has been a great deal of interest in applying machine-
learning methods to a variety of problems in classifying and extracting infor-
mation from text. In large part, this trend has been sparked by the explosive
growth of the World Wide Web. An interesting aspect of the Web is that it
can be thought of as a graph in which pages are the nodes of the graph and
hyperlinks are the edges. The graph structure of the Web makes it an interest-
ing domain for relational learning. In previous work [4], we demonstrated that
for several Web-based learning tasks, a relational learning algorithm can learn
more accurate classifiers than competing propositional approaches. In this pa-
per, we present a new approach to learning hypertext classifiers that combines
a statistical text-learning method with a relational rule learner. We present ex-
periments that evaluate one particular instantiation of this general approach: a
Foir-based [14] learner augmented with the ability to invent predicates using a
Naive Bayes text classifier. Qur experiments indicate that this approach is able
to learn classifiers that are often more accurate than either purely statistical or
purely relational alternatives.

In previous research, the Web has provided a fertile domain for a variety of
machine-learning tasks, including learning to assist users in searches,; learning
information extractors, learning user interests, and others. Most of the research



in this field has involved (i) using propositional learners, and (ii) representing
documents by the words that occur in them. Our approach i1s motivated by two
key properties of hypertext:

— Documents (i.e. pages) are related to one another by hyperlinks. Important
sources of evidence for Web learning tasks can often be found in neighboring
pages and hyperlinks.

— Large feature sets are needed to represent the content of documents because
natural language involves large vocabularies. Typically, text classifiers have
feature spaces of hundreds or thousands of words.

Because it uses a relational learner, our approach is able to represent document
relationships (i.e. arbitrary parts of the hypertext graph) in its learned defini-
tions. Because it also uses a statistical learner with a feature-selection method, it
is able to learn accurate definitions in domains with large vocabularies. Although
our algorithm was designed with hypertext in mind, we believe it is applicable
to other domains that involve both relational structure and large feature sets.

In the next section we describe the commonly used bag-of-words representa-
tion for learning text classifiers. We describe the use of this representation with
the Naive Bayes algorithm, which is often applied to text learning problems. We
then describe how a relational learner, such as FoIL, can use this bag-of-words
representation along with background relations describing the connectivity of
pages for hypertext learning tasks. In Section 3, we describe our new approach
to learning in hypertext domains. Our method is based on the Naive Bayes and
FoiL algorithms presented in Section 2. In Section 4 we empirically evaluate our
algorithm on three types of tasks — learning definitions of page classes, learning
definitions of relations between pages, and learning to locate a particular type of
information within pages — that we have investigated as part of an effort aimed
at developing methods for automatically constructing knowledge bases by ex-
tracting information from the Web [3]. Finally, Section 5 provides conclusions
and discusses future work.

2 Two Approaches to Hypertext Learning

In this section we describe two approaches to learning in text domains. First we
discuss the Naive Bayes algorithm, which is commonly used for text classifica-
tion, and then we describe an approach that involves using a relational learning
method, such as FoIL, for such tasks. These two algorithms are the constituents
of the hybrid algorithm that we present in the next section.

2.1 Naive Bayes for Text Classification

Most work in learning text classifiers involves representing documents using a
bag-of-words representation. In this representation, each document is described
by a feature vector consisting of one feature for each word in the document.
These features can be either boolean (indicating the presence or absence of a



word), or continuous (indicating some measure of the frequency of the word).
The key assumption made by the bag-of-words representation is that the position
of a word in a document does not matter (i.e. encountering the word machine
at the beginning of a document is the same as encountering it at the end).

One common approach to text classification is to use a Naive Bayes classifier
with a bag-of-words representation [12]. Using this method to classify a document

with n words (w1, wa, ..., w,) into one of a set of classes C', we simply calculate:
n
Pr(e; Pr(wile;). 1
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In order to make the word probability estimates Pr(w;|e;) robust with respect
to infrequently encountered words, it is common to use a smoothing method to
calculate them. Once such smoothing technique is to use Laplace estimates:

Pr(wile;) = Nlwi,ej) +1 (2)
N(Cj) + 7T
where N (wj;, ¢;) is the number of times word w; appears in training set examples
from class ¢;, N(¢;) is the total number of words in the training set for class ¢;
and T is the total number of unique words in the corpus.

In addition to the position-independence assumption implicit in the bag-of-
words representation, Naive Bayes also makes the assumption that the occur-
rence of a given word in a document is independent of all other words in the
document. Clearly, this assumption does not hold in real text documents. How-
ever, in practice Naive Bayes classifiers often perform quite well [10].

Since document corpora typically have vocabularies of thousands of words,
it is common in text learning to use some type of feature selection method.
Frequently used methods include (i) dropping putatively un-informative words
that occur on a stop-list, (i) dropping words that occur fewer than a specified
number of times in the training set, (iii) ranking words by a measure such as
their mutual information with the class variable, and then dropping low-ranked
words [17], and (iv) stemming. Stemming refers to the process of heuristically
reducing words to their root form. For example the words compute, computers
and computing would be stemmed to the root comput. Even after employing
such feature-selection methods, it is common to use feature sets consisting of
hundreds or thousands of words.

2.2 Relational Text Learning

Both propositional and relational symbolic rule learners have also been used for
text learning tasks [1,2,13]. We argue that relational learners are especially ap-
pealing for learning in hypertext domains because they enable learned classifiers
to represent the relationships among documents as well as information about the
occurrence of words in documents. In previous work [4], we demonstrated that
this ability enables relational methods to learn more accurate classifiers than
propositional methods in some cases.



In Section 4, we present experiments in which we apply FoIL to several
hypertext learning tasks. The problem representation we use for our relational
learning tasks consists of the following background relations:

— link_to(Hyperlink, Page, Page) : This relation represents Web hyperlinks. For
a given hyperlink, the first argument specifies an identifier for the hyperlink,
the second argument specifies the page in which the hyperlink is located,
and the third argument indicates the page to which the hyperlink points.

— has_word(Page) : This set of relations indicates the words that occur on
each page. There is one predicate for each word in the vocabulary, and each
instance indicates an occurrence of the word in the specified page.

— has_anchor_word(Hyperlink) : This set of relations indicates the words that
are found in the anchor (i.e., underlined) text of each hyperlink.

— has_neighborhood_word(Hyperlink): This set of relations indicates the words
that are found in the “neighborhood” of each hyperlink. The neighborhood
of a hyperlink includes words in a single paragraph, list item, table entry,
title or heading in which the hyperlink is contained.

— all_words_capitalized(Hyperlink) : The instances of this relation are those hy-
perlinks in which all words in the anchor text start with a capital letter.

— has_alphanumeric_word(Hyperlink) : The instances of this relation are those
hyperlinks which contain a word with both alphabetic and numeric charac-

ters (e.g., I teach CS760).

This representation for hypertext enables the learner to construct defini-
tions that describe the graph structure of the Web (using the link_to relation)
and word occurrences in pages and hyperlinks. The has_word, has_anchor_word,
has_neighborhood_word predicates provide a bag-of-words representation of pages
and hyperlinks. Note that we do not use theory constants to represent words be-
cause doing so would require the relational learner we use (FoiL) to add two
literals to a clause for each word test, instead of one as in our representation.

3 Combining the Statistical and Relational Approaches

In this section we present an approach that combines a statistical text learner
with a relational learner. We argue that this algorithm is well suited to hypertext
learning tasks. Like a conventional bag-of-words text classifier, our algorithm is
able to learn predicates that characterize pages or hyperlinks by their word
statistics. However, because it is a relational learning method, it is also able to
represent the graph structure of the Web, and thus it can represent the word
statistics of neighboring pages and hyperlinks.

As described in the previous section, a conventional relational learning algo-
rithm, such as FoIL, can also use employ a bag-of-words representation when
learning in hypertext domains. We hypothesize, however, that our algorithm
has two properties that make it better suited to such tasks than an ordinary
relational method:



Input: uncovered positive examples T, all negative examples T~ of target relation R,
background relations

1. initialize clause C: R(Xo,...Xx) :- true.

2. T=TYuT-

3.  while T' contains negative tuples and C'is not too complex

4. call predicate-invention method to get new candidate literals (Figure 2)
5. select literal (from background or invented predicates) to add to C

6 update tuple set T' to represent variable bindings of updated C'

7 for each invented predicate P;(X;)

8 if P; (X,) was selected for C' then retain it as a background relation

Return: learned clause C'

Fig. 1. The inner loop of FoIL-PiLFs. This is essentially the inner loop of Form. aug-
mented with our predicate invention procedure.

— Because it characterizes pages and hyperlinks using a statistical method,
its learned rules will not be as dependent on the presence or absence of
specific key words as a conventional relational method. Instead, the statistical
classifiers in its learned rules consider the weighted evidence of many words.

— Because it learns each of its statistical predicates to characterize a specific
set of pages or hyperlinks, it can perform feature selection in a more directed
manner. The vocabulary to be used when learning a given predicate can be
selected specifically for the particular classification task at hand. In contrast,
when selecting a vocabulary for a relational learner that represents words
using background relations, the vocabulary is pruned without regard to the
particular subsets of pages and hyperlinks that will be described in clauses,
since a priort we do not know which constants these subsets will include.

We consider our approach to be quite general: it involves using a relational
learner to represent graph structure, and a statistical learner with a feature-
selection method to characterize the edges and nodes of the graph. Here we
present an algorithm, which we refer to as FoiL-PIiLFs (for Forr with Predicate
Invention for Large Feature Spaces), that represents one particular instantiation
of our approach. This algorithm is basically FoIL, augmented with a predicate-
invention method in the spirit of CHAMP [9]. Figure 1 shows the inner loop
of FoIrL-PILFs (which learns a single clause) and its relation to its predicate
invention method, which is shown in Figure 2

The predicates that FoIL-PILFs invents are statistical classifiers applied to
some textual description of pages, hyperlinks, or components thereof. Currently,
the invented predicates are only unary, boolean predicates. We assume that each
constant in the problem domain has a type, and that each type may have one or
more associated document collections. Each constant of the given type maps to a
unique document in each associated collection. For example, the type page might



Input: partial clause C', document collection for each type, parameter €

1 for each variable X; in C

2 for each document collection D; associated with the type of X;

3 St = documents in D, representing constants bound to X; in pos tuples
4 ST = documents in D, representing constants bound to X; in neg tuples
5. rank each word in St U S~ according to mut. info. w/ class variable

6 n=|STUusS|xe

7 F' = top ranked n words

8 call Naive Bayes to learn P;(X,) w/ feature set F', training set St U S~

Return: all learned predicates P;(X;)

Fig. 2. The FoiL-PIiuFs predicate invention method.

be associated with a collection of documents that represent the words in pages,
and the type hyperlink might be associated with two collections of documents —
one which represents the words in the anchor text of hyperlinks and one which
represents the “neighboring” words of hyperlinks.

Whereas CHAMP considers inventing a new predicate only when the basic
relational algorithm fails to find a clause, our method considers inventing new
predicates at each step of the search for a clause. Specifically, at some point
in the search, given a partial clause C' that includes variables Xy,..., X, our
method considers inventing predicates to characterize each X; for which the
variable’s type has an associated collection of documents. If there is more than
one document collection associated with a type, then we consider learning a
predicate for each collection. For example, if X; is of type hyperlink, and we
have two document collections associated with hyperlink — one for anchor text
and one for “neighboring” text — then we would consider learning one predicate
to characterize the constants bound to X; using their anchor text, and one
predicate to characterize the constants using their “neighboring” text.

Once the method has decided to construct a predicate on a given variable
X, using a given document collection, the next step is to assemble the training
set for the Naive Bayes learner. If we think of the tuple set currently covered
by C' as a table in which each row is a tuple and each column corresponds to a
variable in the clause, then the training set consists of those constants appearing
in the column associated with X;. Each row corresponds to either the extension
of a positive training example or the extension of a negative example. Thus
those constants that appear in positive tuples become positive instances for the
predicate-learning task and those that appear in negative tuples become negative
instances. One issue that crops up, however, is that a given constant might
appear multiple times in the X; column, and it might appear in both positive
and negative tuples. We enforce a constraint that a constant may appear only
once in the predicate’s training set. For example, if a given constant is bound
to X; in multiple positive tuples, it appears as only a single instance in the



training set for a predicate. The motivation for this choice is that we want to
learn Naive Bayes classifiers that generalize well to new documents. Thus we
want the learner to focus on the characteristics that are common to many of the
documents in the training set, instead of focusing on the characteristics of a few
instances that each occur many times in the training set.

Before learning a predicate using this training set, our method determines the
vocabulary to be used by Naive Bayes. In some cases the predicate’s training set
may consist of a small number of documents, each of which might be quite large.
Thus, we do not necessarily want to allow Naive Bayes to use all of the words
that occur in the training set as features. The method that we use involves the
following two steps. First, we rank each word w; that occurs in the predicate’s
training set according to its mutual information with the target class for the
predicate. Second, given this ranking, we take the vocabulary for the Naive
Bayes classifier to be the n top-ranked words where n is determined as follows:

n=c¢cxm. (3)

Here m is the number of instances in the predicate’s training set, and € is a
parameter (set to 0.05 throughout our experiments).

The motivation for this heuristic is the following. We want to make the
dimensionality (i.e. feature-set size) of the predicate learning task small enough
such that if we find a predicate that fits its training set well, we can be reasonably
confident that it will generalize to new instances of the “target class.” A lower
bound on the number of examples required to PAC-learn some target function

feFis[8): o
o (VC—dlmensmn(F)) @

€

where € is the usual PAC error parameter. We use this bound to get a rough
answer to the question: given m training examples, how large of a feature space
can we constder such that if we find a promising predicate with our learner in
this feature space, we have some assurance that it will generalize well? The VC-
dimension of a two-class Naive Bayes learner is n 4+ 1 where n 1s the number of
features. Ignoring constant factors, and solving for n we get Equation 3. Note
that this method is only a heuristic. It does not provide any theoretical guar-
antees about the accuracy of learned clauses since it makes several assumptions
(e.g., that the “target function” of the predicate is in F') and does not consider
the broader issue of the accuracy of the clause in which the literal will be used.

Another issue 1s how to set the class priors in the Naive Bayes classifier. Typ-
ically, these are estimated by the class frequencies in the training data. These
estimates are likely to be biased towards the positive class in our context, how-
ever. Consider that estimating the accuracy of a (partially grown) clause by the
fraction of positive training-set tuples it covers will usually result in a biased es-
timate. To compensate for this bias, we simply set the class priors to the uniform
distribution. Moreover, when a document does not contain any of the words in
the vocabulary of one of our learned classifiers, we assign the document to the
negative class (since the priors do not enforce a default class).



Finally, after the candidate Naive-Bayes predicates are constructed, they are
evaluated like any other candidate literal. Those Naive-Bayes predicates that are
included in clauses are retained as new background relations so that they may be
incorporated into subsequent clauses. Those that are not selected are discarded.

Although our Naive Bayes classifiers produce probabilities for each instance,
we do not use these probabilities in our constructed predicates nor in the evalu-
ation of our learned clauses. Naive Bayes’ probability estimates are usually poor
when its independence assumption is violated, although its predictive accuracy
is often quite good in such situations [6].

4 Experimental Evaluation

At the beginning of Section 3, we stated that our ForL-PILFs algorithm has two
desirable properties:

— Because it characterizes pages and hyperlinks using a statistical method such
as Naive Bayes, its learned rules will not be dependent on the presence or
absence of specific key words. Instead, the statistical classifiers used in its
learned rules consider the weighted evidence of many words.

— Because 1t learns each of its statistical predicates to characterize a specific set
of pages or hyperlinks, it can perform feature selection in a directed manner.
The vocabulary to be used when learning a given predicate can be selected
specifically for the particular classification task at hand.

In this section we test the hypothesis that this approach will learn definitions
with higher accuracy than a comparable relational method without the ability to
use such statistical predicates. Specifically, we compare our FoIL-PILFS method
to ordinary FoOIL on several hypertext learning tasks.

4.1 The University Data Set

Our primary data set for these experiments is one assembled for a research
project aimed at extracting knowledge bases from the Web [3]. This project
encompasses many learning problems and we study two of those here. The first
is to recognize instances of knowledge base classes (e.g. students, faculty, courses
etc.) on the Web. In some cases, this can be framed as a page-classification task.
We also want to recognize relations between objects in our knowledge base. Our
approach to this task is to learn prototypical patterns of hyperlink connectivity
among pages. For example, a course home page containing a hyperlink with
the text Instructor: Tom Mitchell pointing to the home page of a faculty
member could be a positive instance of the instructors_of_course relation.

Our data set consists of pages and hyperlinks drawn from the Web sites
of four computer science departments. This data set includes 4,127 pages and
10,945 hyperlinks interconnecting them. Each of the pages is labeled as being the
home page of one seven classes: course, faculty, student, project, staff, department,
and the catch-all other class.




The data set also includes instances of the relations between these enti-
ties. Each relation instance consists of a pair of pages corresponding to the
class instances involved in the relation. For example, an instance of the instruc-
tors_of_course relation consists of a course home page and a person home page.
Our data set of relation instances comprises 251 instructors_of_course instances,
392 members_of _project instances, and 748 department_of_person instances. The
complete data set is available at http://www.cs.cmu.edu/ " WebKB/.

All of the experiments presented with this data set use leave-on-university-out
cross-validation, allowing us to study how a learning method performs on data
from an unseen university. This is important because we evaluate our knowledge
base extractor on previously unseen Web sites.

4.2 The Representations

For the experiments in Sections 4.3 and 4.4, we give FOIL the background pred-
icates described in Section 2.2. One issue that arises in using the predicates that
represent words in pages and hyperlinks is selecting the vocabulary for each one.
For our experiments, we remove stop-words and apply a stemming algorithm to
the remaining words (refer back to Section 2 for descriptions of these processes).
We then use frequency-based vocabulary pruning as follows:

— has_word (Page) : We chose words that occur at least 200 times in the training
set. This procedure results in 607 to 735 predicates for each training set.

— has_anchor_word(Hyperlink) : The vocabulary for this set of relations includes
words that occur at least three times among the hyperlinks in the training
set. This results in 637 to 735 predicates, depending on the training set.

— has_neighborhood_word(Hyperlink): The vocabulary for this set of relations
includes words that occur at least five times among the hyperlinks in the
training set. This set includes 633 to 1025 predicates, depending on the
training set.

The FoirL-PiLFs algorithm is given as background knowledge the relations
listed in Section 2.2, except for the three predicates above. Instead, it is given the
ability to invent predicates that describe the words in pages and the anchor and
neighboring text of hyperlinks. Effectively, the two learners have access to the
same information as input. The key difference is that whereas ordinary FoOIL is
given this information in the form of background predicates, we allow FoIL-PILFS
to reference page and hyperlink words only via invented Naive-Bayes predicates.

4.3 Experiments in Learning Page Classes

To study page classification, we pick the four largest classes from our university
data set: student, course, faculty and project. Each of these classes in turn is
the positive class for four binary page classification problems. For example, we
learn a classifier to distinguish student home pages from all other pages. We run
FoiL and FolL-PiLFs on these tasks, as well as a Naive Bayes classifier applied
directly to the pages.



Table 1. Recall (R), precision (P) and F} scores on each of the classification tasks for
Naive Bayes, FoIL, and FoIiL-PiLFs

student course faculty project
method R P £ R P £ R P £ R P £
Naive Bayes|52.1 42.3 46.7 [46.3 29.6 36.1 [22.2 20.1 21.1 | 1.2 16.7 2.2
FoiL 36.0 61.1 45.3 |45.5 51.2 48.2 [32.7 50.0 39.5 |24 13.3 4.0
FoiL-PiLrs |38.9 66.2 49.0 [48.8 59.5 53.6 |38.6 45.7 41.8 |13.1 17.5 15.0

Table 2. Pairwise comparison of the classifiers. For each pairing, the number of times
one classifier performed better than the other on recall (R) and precision (P) is shown.

|R wins P Wins”

|R wins P Wins”

|R wins P Wins|

Naive Bayes
Fomw

6
8

2
12

Naive Bayes
FoiL-PiLFs

4
9

1
14

FoiL
FoiL-PILFs

4 7
10 8

Table 1 shows the recall (R) and precision (P) results on our four classifica-
tion tasks. Recall and precision are defined as follows:

R= # correct positive examples
—  # of positive examples  ’

_ # correct positive examples

# of positive predictions

Also shown is the Fy score [11,16] for each algorithm on each task. This is a score
commonly used in the information-retrieval community which weights precision
and recall equally and has nice measurement properties. It is defined as:

2PR

“P+R

Iy

Comparing the Fy scores first, we see that both FoiL and FoiL-PILFs out-
perform Naive Bayes on all tasks, except for student, where FoIL lags slightly
behind. More importantly, we observe that our new combined algorithm outper-
forms FoiL on all four classification tasks.

Comparing the precision and recall results for Foil, and FoOIL-PILFS we see
that in all but one case FoIL-PILFs outperforms FoOIL. The increased recall
performance is not surprising, given the statistical nature of the predicates being
produced. They test the aggregate distribution of words in the test document (or
hyperlink), rather than depending on the presence of distinct keywords. Apart
from the faculty task, we also see an increase in precision. This suggests that our
statistical predicates are not only more generally applicable, but they are also
better able to describe the concept being learned. However, since FoOIL-PILFS
can potentially use all the words in the training set, while FOIL can only use the
reduced set of words provided to it, the increase in precision may become less
pronounced when FOIL is given a larger vocabulary.

Pairwise comparisons of the three algorithms are shown in Table 4.3. Here we
see, for each pair of learning methods, how often one of them outperformed the



course_page(A) - page_naive_bayes_1(A), linkto(B,A,C), anchor_naive_bayes_1(B),
page_naive_bayes 2(A).

page_naive_bayes_1 homework, handout, assign, exam, lectur, class, hour, ...
anchor_naive_bayes_1 assign, homework, lectur, syllabu, project, solution, note, ...
page_naive_bayes 2 upson, postscript, textbook.

Fig. 3. Clause learned by FoIL-PI1LFs which covers 43 positive and no negative training
examples. On the unseen test set, it covers 16 course pages and 2 non-course pages.
Also shown are the words with the greatest log-odds ratios for each invented predicate.

other on one of the cross validation runs. For example, of the 16 cross validation
runs performed, FOIL had better recall than Naive Bayes 8 times, and had better
precision 12 times. Confirming the results using the Fy score above, we see that
FoIiL-PiLFs does indeed seem to outperform FoIL which is turn outperforms
Naive Bayes on these four problems.

Figure 3 shows one of the most accurate clauses learned by FoiL-PiLrs. This
clause uses three invented predicates, two which test the distribution of words
on the page to be classified (A), and one which tests the distribution of words
in a hyperlink on this page (B). The highly weighted words from each of these
predicates seem intuitively reasonable for testing whether a page is the home
page of a course. Note that the page_naive_bayes_2 predicate uses only six words,
and only three of them have positive log-odds ratios.

4.4 Experiments in Learning Page Relations

In this section we consider learning target concepts that represent specific rela-
tions between pairs of pages. We learn definitions for the three relations described
in Section 4.1. In addition to the positive instances for these relations, each data
set includes approximately 300,000 negative examples. Our experiments here in-
volve one additional set of background relations: class(Page). For each class from
the previous section, the corresponding relation lists the pages that represent in-
stances of class. These instances are determined using actual classes for pages in
the training set and predicted classes for pages in the test set.

As in the previous section, we learn the target concepts using both (i) a rela-
tional learner given background predicates that provide a bag-of-words represen-
tation of pages and hyperlinks, and (ii) a version of our FoIL-PILFs algorithm.
The base algorithm we use here is slightly different than FoIL, however.

In previous work, we have found that FoIL’s hill-climbing search is not well
suited to learning these relations for cases in which the two pages of an in-
stance are not directly connected. Thus, for the experiments in this section, we
augment both algorithms with a deterministic variant of Richards and Mooney’s
relational pathfinding method [15]. The basic idea underlying this method is that
a relational problem domain can be thought of as a graph in which the nodes are
the domain’s constants and the edges correspond to relations which hold among
constants. The algorithm tries to find a small number of prototypical paths in



Table 3. Recall (R), precision (P) and Fi results for the relation learning tasks.

department_of_person | instructors_of_course | members_of_project
method R P £ R P £ R P £
PaTu-FoIL 45.7 82.0 58.7 66.5 86.1 75.1 58.2 70.2 63.6
ParH-For-PiLrs | 81.4 88.3 84.7 58.2 83.9 68.7 55.4 60.1 57.6

Table 4. Recall (R) and precision (P) results for the relation learning tasks.

department_of_person | instructors_of_course | members_of_project
method R wins P wins R wins P wins R wins P wins
PartH-FoIL 0 0 2 1 1 1
PatH-ForL-PiLFs 2 3 1 2 2 3

this graph that connect the arguments of the target relation. Once such a path
is found, an initial clause is formed from the relations that constitute the path,
and the clause is further refined by a hill-climbing search.

Also, like Dzeroski and Bratko’s m-FoIL [7], both algorithms considered here
use m-estimates of a clause’s error to guide its construction. We have found that
this evaluation function results in fewer, more general clauses for these tasks
than FoIL’s information gain measure.

As in the previous experiment, the only difference between the two algo-
rithms we compare here is the way in which they use predicates to describe
word occurrences. We do not consider directly applying the Naive Bayes method
in these experiments since the target relations are of arity two and necessarily
require a relational learner.

Table 3 shows recall, precision, and Fj results for the three target relations.
For department_of_person, PATH-FOIL-PILFS provides significantly better recall
and precision than PATH-FoOIL. For the other two target concepts, PATH-FoIL
seems to have an edge in both measures. Table 4, however, shows the number
of cross-validation folds for which one algorithm outperformed another. As this
table shows, PATH-FOIL-PILFs is decisively better for department_of_person, but
that neither algorithm is clearly superior for the other two relations.

4.5 Relational Learning and Internal Page Structure

So far we have considered relational learning applied to tasks that involve rep-
resenting the relationships among hypertext documents. Hypertext documents,
however, have internal structure as well. In this section we apply our learning
method to a task that involves representing the internal layout of Web pages.
Specifically, the task we address is the following: given a reference to a country
name in the Web page of a company, determine if the company has operations
in that country or not.



Table 5. Recall (R), precision (P), and F} results for the node classification task.

|method | R P Fi | R wins P wins |
FoIL 55.5 64.0 59.5 1 1
FoiL-PiLFs 64.4 66.6 65.5 4 4

Our approach makes use of an algorithm that parses Web pages into tree
structures representing the layout of the pages [5]. For example, one node of
the tree might represent an HTML table where its ancestors are the HTML
headings that come above it in the page. In general any node in the tree can
have some text associated with it. We frame our task as one of classifying nodes
that contain a country name in their associated text.

In our experiments here we apply FoiL and FoIL-PILFS to this task using
the following background relations:

— heading(Node, Page), li(Node, Page), list(Node, Page), list_or_table(Node, Page),
paragraph(Node, Page), table(Node, Page), td(Node, Page), title(Node, Page),
tr(Node, Page): These predicates list the nodes of each given type, and the
page in which a node is contained. The types correspond to HTML elements.

— ancestor(Node, Node), parent(Node, Node), sibling(Node, Node),
ancestor_heading(Node, Node), parent_heading(Node, Node): These predicates
represent relations that hold among the nodes in a tree.

The target relation, has_location(Node, Page), is a binary relation so that the
learner can easily relate nodes by their common page as well as by their re-
lationship in the tree. In a setup similar to our previous experiments, we give
FoIL a set of has_node_word(Node) predicates, and we allow FoIlL-PILFs to in-
vent predicates that characterize the words in nodes. Qur data set for this task
consists of 788 pages parsed into 44,760 nodes. There are 337 positive instances
of the target relation and 358 negative ones. We compare FoIL to FoOIL-PILFS
on this task using a five-fold cross-validation run.

Table 5 shows the recall, precision and Fj results for this task. Additionally,
the table shows the number of folds for which one algorithm outperformed the
other in terms of precision or recall. FOIL-PILFS provides significantly better
recall and slightly better precision than ordinary FoiL for this task. For both
measures, FOIL-PILFs outperformed FoIL on four out the five folds.

4.6 Varying the Vocabulary Parameter in FoIL-PILFs

As described in Section 3, our FoIL-PILFS algorithm employs a parameter, e,
which controls how many words Naive Bayes can use when constructing a new
predicate. In contrast to our experiments with ordinary FoiL, where we had to
make vocabulary-size decisions separately for the page, anchor and neighborhood
predicates, € provides a single parameter to set when using FoIL-PILFs.



Table 6. Recall (R), precision (P) and Fi scores for FOIL-PILFs on the four page
classification tasks as we vary e.

student course faculty project
€ R P £ R P £ R P £ R P £

0.01 |353 61.8 449 |61.5 50.7 556 |36.6 46.7 41.0 |20.2 20.5 20.4

0.05 | 389 66.2 49.0 |48.8 59.5 53.6 |386 45.7 41.8 |13.1 17.5 15.0
0.10 [ 479 63.6 546 |50.8 55.6 53.1 |37.3 51.8 43.4 |21.4 22.0 217

In all of our experiments so far we have set € = 0.05. In order to assess how
FoiL-PIiLFs’s performance is affected by varying €, we rerun the page classifica-
tion experiment from Section 4.3 with € set to 0.01 and 0.1. The former forces
Naive Bayes to work with fewer words, the latter allows it twice as many as in
our original experiments. Precision, recall and F scores for this experiment are
shown in Table 6. Referring back to Table 1 we see that the general results do
not change much with the values of € considered. This seems to indicate that
performance is not overly sensitive to the value of e.

5 Conclusions

We have presented a hybrid relational /statistical approach to learning in hyper-
text domains. Whereas the relational component is able to describe the graph
structure of hyperlinked pages or the internal structure of HTML pages, the
statistical component is adept at learning predicates that characterize the distri-
bution of words in pages and hyperlinks of interest. We described one particular
instantiation of this approach: an algorithm based on FoIL that invents predi-
cates on demand which are represented as Naive Bayes models. We evaluated this
approach by comparing it to a baseline method that represents words directly
in background relations. Our experiments indicate that our method generally
learns more accurate definitions.

Although we have explored one particular instantiation of our approach in
this paper, we believe that it is worthwhile investigating both (i) using other
search strategies for learning clauses, and (ii) using other statistical methods for
constructing predicates. Additionally, we also plan to investigate using the prob-
abilities estimated by our statistical classifiers when evaluating learned clauses.

Finally, we believe that our approach is applicable to learning tasks other
than those that involve hypertext. We hypothesize that it is well suited to other
domains that involve both relational structure, and potentially large feature
spaces. In future work, we plan to apply our method in such domains.
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