
Appears in Proceedings of the 8th International Conference on Inductive LogicProgramming, Springer-Verlag, 1998.Combining Statistical and Relational Methodsfor Learning in Hypertext DomainsSe�an Slattery and Mark CravenSchool of Computer Science,Carnegie Mellon UniversityPittsburgh, PA 15213-3891, USAe-mail: h�rstnamei.hlastnamei@cs.cmu.eduAbstract. We present a new approach to learning hypertext classi�ersthat combines a statistical text-learning method with a relational rulelearner. This approach is well suited to learning in hypertext domainsbecause its statistical component allows it to characterize text in termsof word frequencies, whereas its relational component is able to describehow neighboring documents are related to each other by hyperlinks thatconnect them. We evaluate our approach by applying it to tasks that in-volve learning de�nitions for (i) classes of pages, (ii) particular relationsthat exist between pairs of pages, and (iii) locating a particular class ofinformation in the internal structure of pages. Our experiments demon-strate that this new approach is able to learn more accurate classi�ersthan either of its constituent methods alone.1 IntroductionIn recent years there has been a great deal of interest in applying machine-learning methods to a variety of problems in classifying and extracting infor-mation from text. In large part, this trend has been sparked by the explosivegrowth of the World Wide Web. An interesting aspect of the Web is that itcan be thought of as a graph in which pages are the nodes of the graph andhyperlinks are the edges. The graph structure of the Web makes it an interest-ing domain for relational learning. In previous work [4], we demonstrated thatfor several Web-based learning tasks, a relational learning algorithm can learnmore accurate classi�ers than competing propositional approaches. In this pa-per, we present a new approach to learning hypertext classi�ers that combinesa statistical text-learning method with a relational rule learner. We present ex-periments that evaluate one particular instantiation of this general approach: aFoil-based [14] learner augmented with the ability to invent predicates using aNaive Bayes text classi�er. Our experiments indicate that this approach is ableto learn classi�ers that are often more accurate than either purely statistical orpurely relational alternatives.In previous research, the Web has provided a fertile domain for a variety ofmachine-learning tasks, including learning to assist users in searches, learninginformation extractors, learning user interests, and others. Most of the research



in this �eld has involved (i) using propositional learners, and (ii) representingdocuments by the words that occur in them. Our approach is motivated by twokey properties of hypertext:{ Documents (i.e. pages) are related to one another by hyperlinks. Importantsources of evidence for Web learning tasks can often be found in neighboringpages and hyperlinks.{ Large feature sets are needed to represent the content of documents becausenatural language involves large vocabularies. Typically, text classi�ers havefeature spaces of hundreds or thousands of words.Because it uses a relational learner, our approach is able to represent documentrelationships (i.e. arbitrary parts of the hypertext graph) in its learned de�ni-tions. Because it also uses a statistical learner with a feature-selection method, itis able to learn accurate de�nitions in domains with large vocabularies. Althoughour algorithm was designed with hypertext in mind, we believe it is applicableto other domains that involve both relational structure and large feature sets.In the next section we describe the commonly used bag-of-words representa-tion for learning text classi�ers. We describe the use of this representation withthe Naive Bayes algorithm, which is often applied to text learning problems. Wethen describe how a relational learner, such as Foil, can use this bag-of-wordsrepresentation along with background relations describing the connectivity ofpages for hypertext learning tasks. In Section 3, we describe our new approachto learning in hypertext domains. Our method is based on the Naive Bayes andFoil algorithms presented in Section 2. In Section 4 we empirically evaluate ouralgorithm on three types of tasks { learning de�nitions of page classes, learningde�nitions of relations between pages, and learning to locate a particular type ofinformation within pages { that we have investigated as part of an e�ort aimedat developing methods for automatically constructing knowledge bases by ex-tracting information from the Web [3]. Finally, Section 5 provides conclusionsand discusses future work.2 Two Approaches to Hypertext LearningIn this section we describe two approaches to learning in text domains. First wediscuss the Naive Bayes algorithm, which is commonly used for text classi�ca-tion, and then we describe an approach that involves using a relational learningmethod, such as Foil, for such tasks. These two algorithms are the constituentsof the hybrid algorithm that we present in the next section.2.1 Naive Bayes for Text Classi�cationMost work in learning text classi�ers involves representing documents using abag-of-words representation. In this representation, each document is describedby a feature vector consisting of one feature for each word in the document.These features can be either boolean (indicating the presence or absence of a



word), or continuous (indicating some measure of the frequency of the word).The key assumption made by the bag-of-words representation is that the positionof a word in a document does not matter (i.e. encountering the word machineat the beginning of a document is the same as encountering it at the end).One common approach to text classi�cation is to use a Naive Bayes classi�erwith a bag-of-words representation [12]. Using this method to classify a documentwith n words (w1; w2; : : : ; wn) into one of a set of classes C, we simply calculate:argmaxcj2C Pr(cj) nYi=1Pr(wijcj): (1)In order to make the word probability estimates Pr(wijcj) robust with respectto infrequently encountered words, it is common to use a smoothing method tocalculate them. Once such smoothing technique is to use Laplace estimates:Pr(wijcj) = N (wi; cj) + 1N (cj) + T (2)where N (wi; cj) is the number of times word wi appears in training set examplesfrom class cj, N (cj) is the total number of words in the training set for class cjand T is the total number of unique words in the corpus.In addition to the position-independence assumption implicit in the bag-of-words representation, Naive Bayes also makes the assumption that the occur-rence of a given word in a document is independent of all other words in thedocument. Clearly, this assumption does not hold in real text documents. How-ever, in practice Naive Bayes classi�ers often perform quite well [10].Since document corpora typically have vocabularies of thousands of words,it is common in text learning to use some type of feature selection method.Frequently used methods include (i) dropping putatively un-informative wordsthat occur on a stop-list, (ii) dropping words that occur fewer than a speci�ednumber of times in the training set, (iii) ranking words by a measure such astheir mutual information with the class variable, and then dropping low-rankedwords [17], and (iv) stemming. Stemming refers to the process of heuristicallyreducing words to their root form. For example the words compute, computersand computing would be stemmed to the root comput. Even after employingsuch feature-selection methods, it is common to use feature sets consisting ofhundreds or thousands of words.2.2 Relational Text LearningBoth propositional and relational symbolic rule learners have also been used fortext learning tasks [1, 2, 13]. We argue that relational learners are especially ap-pealing for learning in hypertext domains because they enable learned classi�ersto represent the relationships among documents as well as information about theoccurrence of words in documents. In previous work [4], we demonstrated thatthis ability enables relational methods to learn more accurate classi�ers thanpropositional methods in some cases.



In Section 4, we present experiments in which we apply Foil to severalhypertext learning tasks. The problem representation we use for our relationallearning tasks consists of the following background relations:{ link to(Hyperlink, Page, Page) : This relation represents Web hyperlinks. Fora given hyperlink, the �rst argument speci�es an identi�er for the hyperlink,the second argument speci�es the page in which the hyperlink is located,and the third argument indicates the page to which the hyperlink points.{ has word(Page) : This set of relations indicates the words that occur oneach page. There is one predicate for each word in the vocabulary, and eachinstance indicates an occurrence of the word in the speci�ed page.{ has anchor word(Hyperlink) : This set of relations indicates the words thatare found in the anchor (i.e., underlined) text of each hyperlink.{ has neighborhood word(Hyperlink): This set of relations indicates the wordsthat are found in the \neighborhood" of each hyperlink. The neighborhoodof a hyperlink includes words in a single paragraph, list item, table entry,title or heading in which the hyperlink is contained.{ all words capitalized(Hyperlink) : The instances of this relation are those hy-perlinks in which all words in the anchor text start with a capital letter.{ has alphanumeric word(Hyperlink) : The instances of this relation are thosehyperlinks which contain a word with both alphabetic and numeric charac-ters (e.g., I teach CS760).This representation for hypertext enables the learner to construct de�ni-tions that describe the graph structure of the Web (using the link to relation)and word occurrences in pages and hyperlinks. The has word, has anchor word,has neighborhood word predicates provide a bag-of-words representation of pagesand hyperlinks. Note that we do not use theory constants to represent words be-cause doing so would require the relational learner we use (Foil) to add twoliterals to a clause for each word test, instead of one as in our representation.3 Combining the Statistical and Relational ApproachesIn this section we present an approach that combines a statistical text learnerwith a relational learner. We argue that this algorithm is well suited to hypertextlearning tasks. Like a conventional bag-of-words text classi�er, our algorithm isable to learn predicates that characterize pages or hyperlinks by their wordstatistics. However, because it is a relational learning method, it is also able torepresent the graph structure of the Web, and thus it can represent the wordstatistics of neighboring pages and hyperlinks.As described in the previous section, a conventional relational learning algo-rithm, such as Foil, can also use employ a bag-of-words representation whenlearning in hypertext domains. We hypothesize, however, that our algorithmhas two properties that make it better suited to such tasks than an ordinaryrelational method:



Input: uncovered positive examples T+, all negative examples T� of target relation R,background relations1. initialize clause C: R(X0; :::Xk) :- true.2. T = T+ [ T�3. while T contains negative tuples and C is not too complex4. call predicate-invention method to get new candidate literals (Figure 2)5. select literal (from background or invented predicates) to add to C6. update tuple set T to represent variable bindings of updated C7. for each invented predicate Pj(Xi)8. if Pj(Xi) was selected for C then retain it as a background relationReturn: learned clause CFig. 1. The inner loop of Foil-Pilfs. This is essentially the inner loop of Foil aug-mented with our predicate invention procedure.{ Because it characterizes pages and hyperlinks using a statistical method,its learned rules will not be as dependent on the presence or absence ofspeci�c key words as a conventional relational method. Instead, the statisticalclassi�ers in its learned rules consider the weighted evidence of many words.{ Because it learns each of its statistical predicates to characterize a speci�cset of pages or hyperlinks, it can perform feature selection in a more directedmanner. The vocabulary to be used when learning a given predicate can beselected speci�cally for the particular classi�cation task at hand. In contrast,when selecting a vocabulary for a relational learner that represents wordsusing background relations, the vocabulary is pruned without regard to theparticular subsets of pages and hyperlinks that will be described in clauses,since a priori we do not know which constants these subsets will include.We consider our approach to be quite general: it involves using a relationallearner to represent graph structure, and a statistical learner with a feature-selection method to characterize the edges and nodes of the graph. Here wepresent an algorithm, which we refer to as Foil-Pilfs (for Foil with PredicateInvention for Large Feature Spaces), that represents one particular instantiationof our approach. This algorithm is basically Foil, augmented with a predicate-invention method in the spirit of Champ [9]. Figure 1 shows the inner loopof Foil-Pilfs (which learns a single clause) and its relation to its predicateinvention method, which is shown in Figure 2The predicates that Foil-Pilfs invents are statistical classi�ers applied tosome textual description of pages, hyperlinks, or components thereof. Currently,the invented predicates are only unary, boolean predicates. We assume that eachconstant in the problem domain has a type, and that each type may have one ormore associated document collections. Each constant of the given type maps to aunique document in each associated collection. For example, the type page might



Input: partial clause C, document collection for each type, parameter �1. for each variable Xi in C2. for each document collection Dj associated with the type of Xi3. S+ = documents in Dj representing constants bound to Xi in pos tuples4. S� = documents in Dj representing constants bound to Xi in neg tuples5. rank each word in S+ [ S� according to mut. info. w/ class variable6. n = jS+ [ S�j � �7. F = top ranked n words8. call Naive Bayes to learn Pj(Xi) w/ feature set F , training set S+ [S�Return: all learned predicates Pj(Xi)Fig. 2. The Foil-Pilfs predicate invention method.be associated with a collection of documents that represent the words in pages,and the type hyperlink might be associated with two collections of documents {one which represents the words in the anchor text of hyperlinks and one whichrepresents the \neighboring" words of hyperlinks.Whereas Champ considers inventing a new predicate only when the basicrelational algorithm fails to �nd a clause, our method considers inventing newpredicates at each step of the search for a clause. Speci�cally, at some pointin the search, given a partial clause C that includes variables X1,..., Xn, ourmethod considers inventing predicates to characterize each Xi for which thevariable's type has an associated collection of documents. If there is more thanone document collection associated with a type, then we consider learning apredicate for each collection. For example, if Xi is of type hyperlink, and wehave two document collections associated with hyperlink { one for anchor textand one for \neighboring" text { then we would consider learning one predicateto characterize the constants bound to Xi using their anchor text, and onepredicate to characterize the constants using their \neighboring" text.Once the method has decided to construct a predicate on a given variableXi using a given document collection, the next step is to assemble the trainingset for the Naive Bayes learner. If we think of the tuple set currently coveredby C as a table in which each row is a tuple and each column corresponds to avariable in the clause, then the training set consists of those constants appearingin the column associated with Xi. Each row corresponds to either the extensionof a positive training example or the extension of a negative example. Thusthose constants that appear in positive tuples become positive instances for thepredicate-learning task and those that appear in negative tuples become negativeinstances. One issue that crops up, however, is that a given constant mightappear multiple times in the Xi column, and it might appear in both positiveand negative tuples. We enforce a constraint that a constant may appear onlyonce in the predicate's training set. For example, if a given constant is boundto Xi in multiple positive tuples, it appears as only a single instance in the



training set for a predicate. The motivation for this choice is that we want tolearn Naive Bayes classi�ers that generalize well to new documents. Thus wewant the learner to focus on the characteristics that are common to many of thedocuments in the training set, instead of focusing on the characteristics of a fewinstances that each occur many times in the training set.Before learning a predicate using this training set, our method determines thevocabulary to be used by Naive Bayes. In some cases the predicate's training setmay consist of a small number of documents, each of which might be quite large.Thus, we do not necessarily want to allow Naive Bayes to use all of the wordsthat occur in the training set as features. The method that we use involves thefollowing two steps. First, we rank each word wi that occurs in the predicate'straining set according to its mutual information with the target class for thepredicate. Second, given this ranking, we take the vocabulary for the NaiveBayes classi�er to be the n top-ranked words where n is determined as follows:n = ��m: (3)Here m is the number of instances in the predicate's training set, and � is aparameter (set to 0.05 throughout our experiments).The motivation for this heuristic is the following. We want to make thedimensionality (i.e. feature-set size) of the predicate learning task small enoughsuch that if we �nd a predicate that �ts its training set well, we can be reasonablycon�dent that it will generalize to new instances of the \target class." A lowerbound on the number of examples required to PAC-learn some target functionf 2 F is [8]: m = 
�VC-dimension(F )� � (4)where � is the usual PAC error parameter. We use this bound to get a roughanswer to the question: given m training examples, how large of a feature spacecan we consider such that if we �nd a promising predicate with our learner inthis feature space, we have some assurance that it will generalize well? The VC-dimension of a two-class Naive Bayes learner is n + 1 where n is the number offeatures. Ignoring constant factors, and solving for n we get Equation 3. Notethat this method is only a heuristic. It does not provide any theoretical guar-antees about the accuracy of learned clauses since it makes several assumptions(e.g., that the \target function" of the predicate is in F ) and does not considerthe broader issue of the accuracy of the clause in which the literal will be used.Another issue is how to set the class priors in the Naive Bayes classi�er. Typ-ically, these are estimated by the class frequencies in the training data. Theseestimates are likely to be biased towards the positive class in our context, how-ever. Consider that estimating the accuracy of a (partially grown) clause by thefraction of positive training-set tuples it covers will usually result in a biased es-timate. To compensate for this bias, we simply set the class priors to the uniformdistribution. Moreover, when a document does not contain any of the words inthe vocabulary of one of our learned classi�ers, we assign the document to thenegative class (since the priors do not enforce a default class).



Finally, after the candidate Naive-Bayes predicates are constructed, they areevaluated like any other candidate literal. Those Naive-Bayes predicates that areincluded in clauses are retained as new background relations so that they may beincorporated into subsequent clauses. Those that are not selected are discarded.Although our Naive Bayes classi�ers produce probabilities for each instance,we do not use these probabilities in our constructed predicates nor in the evalu-ation of our learned clauses. Naive Bayes' probability estimates are usually poorwhen its independence assumption is violated, although its predictive accuracyis often quite good in such situations [6].4 Experimental EvaluationAt the beginning of Section 3, we stated that our Foil-Pilfs algorithm has twodesirable properties:{ Because it characterizes pages and hyperlinks using a statistical method suchas Naive Bayes, its learned rules will not be dependent on the presence orabsence of speci�c key words. Instead, the statistical classi�ers used in itslearned rules consider the weighted evidence of many words.{ Because it learns each of its statistical predicates to characterize a speci�c setof pages or hyperlinks, it can perform feature selection in a directed manner.The vocabulary to be used when learning a given predicate can be selectedspeci�cally for the particular classi�cation task at hand.In this section we test the hypothesis that this approach will learn de�nitionswith higher accuracy than a comparable relational method without the ability touse such statistical predicates. Speci�cally, we compare our Foil-Pilfs methodto ordinary Foil on several hypertext learning tasks.4.1 The University Data SetOur primary data set for these experiments is one assembled for a researchproject aimed at extracting knowledge bases from the Web [3]. This projectencompasses many learning problems and we study two of those here. The �rstis to recognize instances of knowledge base classes (e.g. students, faculty, coursesetc.) on the Web. In some cases, this can be framed as a page-classi�cation task.We also want to recognize relations between objects in our knowledge base. Ourapproach to this task is to learn prototypical patterns of hyperlink connectivityamong pages. For example, a course home page containing a hyperlink withthe text Instructor: Tom Mitchell pointing to the home page of a facultymember could be a positive instance of the instructors of course relation.Our data set consists of pages and hyperlinks drawn from the Web sitesof four computer science departments. This data set includes 4,127 pages and10,945 hyperlinks interconnecting them. Each of the pages is labeled as being thehome page of one seven classes: course, faculty, student, project, sta�, department,and the catch-all other class.



The data set also includes instances of the relations between these enti-ties. Each relation instance consists of a pair of pages corresponding to theclass instances involved in the relation. For example, an instance of the instruc-tors of course relation consists of a course home page and a person home page.Our data set of relation instances comprises 251 instructors of course instances,392 members of project instances, and 748 department of person instances. Thecomplete data set is available at http://www.cs.cmu.edu/~WebKB/.All of the experiments presented with this data set use leave-on-university-outcross-validation, allowing us to study how a learning method performs on datafrom an unseen university. This is important because we evaluate our knowledgebase extractor on previously unseen Web sites.4.2 The RepresentationsFor the experiments in Sections 4.3 and 4.4, we give Foil the background pred-icates described in Section 2.2. One issue that arises in using the predicates thatrepresent words in pages and hyperlinks is selecting the vocabulary for each one.For our experiments, we remove stop-words and apply a stemming algorithm tothe remaining words (refer back to Section 2 for descriptions of these processes).We then use frequency-based vocabulary pruning as follows:{ has word (Page) : We chose words that occur at least 200 times in the trainingset. This procedure results in 607 to 735 predicates for each training set.{ has anchor word(Hyperlink) : The vocabulary for this set of relations includeswords that occur at least three times among the hyperlinks in the trainingset. This results in 637 to 735 predicates, depending on the training set.{ has neighborhood word(Hyperlink): The vocabulary for this set of relationsincludes words that occur at least �ve times among the hyperlinks in thetraining set. This set includes 633 to 1025 predicates, depending on thetraining set.The Foil-Pilfs algorithm is given as background knowledge the relationslisted in Section 2.2, except for the three predicates above. Instead, it is given theability to invent predicates that describe the words in pages and the anchor andneighboring text of hyperlinks. E�ectively, the two learners have access to thesame information as input. The key di�erence is that whereas ordinary Foil isgiven this information in the formof background predicates, we allowFoil-Pilfsto reference page and hyperlink words only via invented Naive-Bayes predicates.4.3 Experiments in Learning Page ClassesTo study page classi�cation, we pick the four largest classes from our universitydata set: student, course, faculty and project. Each of these classes in turn isthe positive class for four binary page classi�cation problems. For example, welearn a classi�er to distinguish student home pages from all other pages. We runFoil and Foil-Pilfs on these tasks, as well as a Naive Bayes classi�er applieddirectly to the pages.



Table 1. Recall (R), precision (P) and F1 scores on each of the classi�cation tasks forNaive Bayes, Foil, and Foil-Pilfsstudent course faculty projectmethod R P F1 R P F1 R P F1 R P F1Naive Bayes 52.1 42.3 46.7 46.3 29.6 36.1 22.2 20.1 21.1 1.2 16.7 2.2Foil 36.0 61.1 45.3 45.5 51.2 48.2 32.7 50.0 39.5 2.4 13.3 4.0Foil-Pilfs 38.9 66.2 49.0 48.8 59.5 53.6 38.6 45.7 41.8 13.1 17.5 15.0Table 2. Pairwise comparison of the classi�ers. For each pairing, the number of timesone classi�er performed better than the other on recall (R) and precision (P) is shown.R wins P wins R wins P wins R wins P winsNaive Bayes 6 2 Naive Bayes 4 1 Foil 4 7Foil 8 12 Foil-Pilfs 9 14 Foil-Pilfs 10 8Table 1 shows the recall (R) and precision (P ) results on our four classi�ca-tion tasks. Recall and precision are de�ned as follows:R = # correct positive examples# of positive examples , P = # correct positive examples# of positive predictions :Also shown is the F1 score [11,16] for each algorithm on each task. This is a scorecommonly used in the information-retrieval community which weights precisionand recall equally and has nice measurement properties. It is de�ned as:F1 = 2PRP +R:Comparing the F1 scores �rst, we see that both Foil and Foil-Pilfs out-perform Naive Bayes on all tasks, except for student, where Foil lags slightlybehind. More importantly, we observe that our new combined algorithm outper-forms Foil on all four classi�cation tasks.Comparing the precision and recall results for Foil and Foil-Pilfs we seethat in all but one case Foil-Pilfs outperforms Foil. The increased recallperformance is not surprising, given the statistical nature of the predicates beingproduced. They test the aggregate distribution of words in the test document (orhyperlink), rather than depending on the presence of distinct keywords. Apartfrom the faculty task, we also see an increase in precision. This suggests that ourstatistical predicates are not only more generally applicable, but they are alsobetter able to describe the concept being learned. However, since Foil-Pilfscan potentially use all the words in the training set, while Foil can only use thereduced set of words provided to it, the increase in precision may become lesspronounced when Foil is given a larger vocabulary.Pairwise comparisons of the three algorithms are shown in Table 4.3. Here wesee, for each pair of learning methods, how often one of them outperformed the



course page(A) :- page naive bayes 1(A), link to(B,A,C), anchor naive bayes 1(B),page naive bayes 2(A).page naive bayes 1 homework, handout, assign, exam, lectur, class, hour, . . .anchor naive bayes 1 assign, homework, lectur, syllabu, project, solution, note, . . .page naive bayes 2 upson, postscript, textbook.Fig. 3. Clause learned by Foil-Pilfs which covers 43 positive and no negative trainingexamples. On the unseen test set, it covers 16 course pages and 2 non-course pages.Also shown are the words with the greatest log-odds ratios for each invented predicate.other on one of the cross validation runs. For example, of the 16 cross validationruns performed, Foil had better recall than Naive Bayes 8 times, and had betterprecision 12 times. Con�rming the results using the F1 score above, we see thatFoil-Pilfs does indeed seem to outperform Foil which is turn outperformsNaive Bayes on these four problems.Figure 3 shows one of the most accurate clauses learned by Foil-Pilfs. Thisclause uses three invented predicates, two which test the distribution of wordson the page to be classi�ed (A), and one which tests the distribution of wordsin a hyperlink on this page (B). The highly weighted words from each of thesepredicates seem intuitively reasonable for testing whether a page is the homepage of a course. Note that the page naive bayes 2 predicate uses only six words,and only three of them have positive log-odds ratios.4.4 Experiments in Learning Page RelationsIn this section we consider learning target concepts that represent speci�c rela-tions between pairs of pages. We learn de�nitions for the three relations describedin Section 4.1. In addition to the positive instances for these relations, each dataset includes approximately 300,000 negative examples. Our experiments here in-volve one additional set of background relations: class(Page). For each class fromthe previous section, the corresponding relation lists the pages that represent in-stances of class. These instances are determined using actual classes for pages inthe training set and predicted classes for pages in the test set.As in the previous section, we learn the target concepts using both (i) a rela-tional learner given background predicates that provide a bag-of-words represen-tation of pages and hyperlinks, and (ii) a version of our Foil-Pilfs algorithm.The base algorithm we use here is slightly di�erent than Foil, however.In previous work, we have found that Foil's hill-climbing search is not wellsuited to learning these relations for cases in which the two pages of an in-stance are not directly connected. Thus, for the experiments in this section, weaugment both algorithms with a deterministic variant of Richards and Mooney'srelational path�nding method [15]. The basic idea underlying this method is thata relational problem domain can be thought of as a graph in which the nodes arethe domain's constants and the edges correspond to relations which hold amongconstants. The algorithm tries to �nd a small number of prototypical paths in



Table 3. Recall (R), precision (P ) and F1 results for the relation learning tasks.department of person instructors of course members of projectmethod R P F1 R P F1 R P F1Path-Foil 45.7 82.0 58.7 66.5 86.1 75.1 58.2 70.2 63.6Path-Foil-Pilfs 81.4 88.3 84.7 58.2 83.9 68.7 55.4 60.1 57.6Table 4. Recall (R) and precision (P ) results for the relation learning tasks.department of person instructors of course members of projectmethod R wins P wins R wins P wins R wins P winsPath-Foil 0 0 2 1 1 1Path-Foil-Pilfs 2 3 1 2 2 3this graph that connect the arguments of the target relation. Once such a pathis found, an initial clause is formed from the relations that constitute the path,and the clause is further re�ned by a hill-climbing search.Also, like D�zeroski and Bratko's m-Foil [7], both algorithms considered hereuse m-estimates of a clause's error to guide its construction. We have found thatthis evaluation function results in fewer, more general clauses for these tasksthan Foil's information gain measure.As in the previous experiment, the only di�erence between the two algo-rithms we compare here is the way in which they use predicates to describeword occurrences. We do not consider directly applying the Naive Bayes methodin these experiments since the target relations are of arity two and necessarilyrequire a relational learner.Table 3 shows recall, precision, and F1 results for the three target relations.For department of person, Path-Foil-Pilfs provides signi�cantly better recalland precision than Path-Foil. For the other two target concepts, Path-Foilseems to have an edge in both measures. Table 4, however, shows the numberof cross-validation folds for which one algorithm outperformed another. As thistable shows, Path-Foil-Pilfs is decisively better for department of person, butthat neither algorithm is clearly superior for the other two relations.4.5 Relational Learning and Internal Page StructureSo far we have considered relational learning applied to tasks that involve rep-resenting the relationships among hypertext documents. Hypertext documents,however, have internal structure as well. In this section we apply our learningmethod to a task that involves representing the internal layout of Web pages.Speci�cally, the task we address is the following: given a reference to a countryname in the Web page of a company, determine if the company has operationsin that country or not.



Table 5. Recall (R), precision (P ), and F1 results for the node classi�cation task.method R P F1 R wins P winsFoil 55.5 64.0 59.5 1 1Foil-Pilfs 64.4 66.6 65.5 4 4Our approach makes use of an algorithm that parses Web pages into treestructures representing the layout of the pages [5]. For example, one node ofthe tree might represent an HTML table where its ancestors are the HTMLheadings that come above it in the page. In general any node in the tree canhave some text associated with it. We frame our task as one of classifying nodesthat contain a country name in their associated text.In our experiments here we apply Foil and Foil-Pilfs to this task usingthe following background relations:{ heading(Node, Page), li(Node, Page), list(Node, Page), list or table(Node, Page),paragraph(Node, Page), table(Node, Page), td(Node, Page), title(Node, Page),tr(Node, Page): These predicates list the nodes of each given type, and thepage in which a node is contained. The types correspond to HTML elements.{ ancestor(Node, Node), parent(Node, Node), sibling(Node, Node),ancestor heading(Node, Node), parent heading(Node, Node): These predicatesrepresent relations that hold among the nodes in a tree.The target relation, has location(Node, Page), is a binary relation so that thelearner can easily relate nodes by their common page as well as by their re-lationship in the tree. In a setup similar to our previous experiments, we giveFoil a set of has node word(Node) predicates, and we allow Foil-Pilfs to in-vent predicates that characterize the words in nodes. Our data set for this taskconsists of 788 pages parsed into 44,760 nodes. There are 337 positive instancesof the target relation and 358 negative ones. We compare Foil to Foil-Pilfson this task using a �ve-fold cross-validation run.Table 5 shows the recall, precision and F1 results for this task. Additionally,the table shows the number of folds for which one algorithm outperformed theother in terms of precision or recall. Foil-Pilfs provides signi�cantly betterrecall and slightly better precision than ordinary Foil for this task. For bothmeasures, Foil-Pilfs outperformed Foil on four out the �ve folds.4.6 Varying the Vocabulary Parameter in Foil-PilfsAs described in Section 3, our Foil-Pilfs algorithm employs a parameter, �,which controls how many words Naive Bayes can use when constructing a newpredicate. In contrast to our experiments with ordinary Foil, where we had tomake vocabulary-size decisions separately for the page, anchor and neighborhoodpredicates, � provides a single parameter to set when using Foil-Pilfs.



Table 6. Recall (R), precision (P) and F1 scores for Foil-Pilfs on the four pageclassi�cation tasks as we vary �.student course faculty project� R P F1 R P F1 R P F1 R P F10.01 35.3 61.8 44.9 61.5 50.7 55.6 36.6 46.7 41.0 20.2 20.5 20.40.05 38.9 66.2 49.0 48.8 59.5 53.6 38.6 45.7 41.8 13.1 17.5 15.00.10 47.9 63.6 54.6 50.8 55.6 53.1 37.3 51.8 43.4 21.4 22.0 21.7In all of our experiments so far we have set � = 0:05. In order to assess howFoil-Pilfs's performance is a�ected by varying �, we rerun the page classi�ca-tion experiment from Section 4.3 with � set to 0.01 and 0.1. The former forcesNaive Bayes to work with fewer words, the latter allows it twice as many as inour original experiments. Precision, recall and F1 scores for this experiment areshown in Table 6. Referring back to Table 1 we see that the general results donot change much with the values of � considered. This seems to indicate thatperformance is not overly sensitive to the value of �.5 ConclusionsWe have presented a hybrid relational/statistical approach to learning in hyper-text domains. Whereas the relational component is able to describe the graphstructure of hyperlinked pages or the internal structure of HTML pages, thestatistical component is adept at learning predicates that characterize the distri-bution of words in pages and hyperlinks of interest. We described one particularinstantiation of this approach: an algorithm based on Foil that invents predi-cates on demand which are represented as Naive Bayes models.We evaluated thisapproach by comparing it to a baseline method that represents words directlyin background relations. Our experiments indicate that our method generallylearns more accurate de�nitions.Although we have explored one particular instantiation of our approach inthis paper, we believe that it is worthwhile investigating both (i) using othersearch strategies for learning clauses, and (ii) using other statistical methods forconstructing predicates. Additionally, we also plan to investigate using the prob-abilities estimated by our statistical classi�ers when evaluating learned clauses.Finally, we believe that our approach is applicable to learning tasks otherthan those that involve hypertext. We hypothesize that it is well suited to otherdomains that involve both relational structure, and potentially large featurespaces. In future work, we plan to apply our method in such domains.AcknowledgmentsThanks to Dan DiPasquo for his assistance with the experiments reported inSection 4.5. This research was supported in part by the DARPA HPKB programunder contract F30602-97-1-0215.
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